A100147 Structured icosidodecahedral numbers.
1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645, 424650
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(1+(n-1))*(1+2*(n-1))*(1+4*(n-1)): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
Table[(48*n^3 - 60*n^2 + 18*n)/6, {n,1,50}] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
a(n)=n*(8*n^2-10*n+3) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (1/6)*(48*n^3 - 60*n^2 + 18*n).
a(n) = A079588(n-1) = n*(2*n-1)*(4*n-3). - R. J. Mathar, Sep 02 2008
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (1+(n-1))*(1+2*(n-1))*(1+4*(n-1)).
G.f.: x*(1 + 26*x + 21*x^2)/(1-x)^4. (End)
E.g.f.: x*(1 + 14*x + 8*x^2)*exp(x). - G. C. Greubel, Oct 18 2018
From Amiram Eldar, Sep 20 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)+1)/3 + log(2)/3 - (3 - 2*sqrt(2))*Pi/6. (End)
Comments