cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100147 Structured icosidodecahedral numbers.

Original entry on oeis.org

1, 30, 135, 364, 765, 1386, 2275, 3480, 5049, 7030, 9471, 12420, 15925, 20034, 24795, 30256, 36465, 43470, 51319, 60060, 69741, 80410, 92115, 104904, 118825, 133926, 150255, 167860, 186789, 207090, 228811, 252000, 276705, 302974, 330855, 360396, 391645, 424650
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Equals row sums of triangle A143254 & binomial transform of [1, 29, 76, 48, 0, 0, 0, ...]. - Gary W. Adamson, Aug 02 2008
Apart from offset, same as A079588.

Crossrefs

Cf. A100146, A100148 for adjacent structured Archimedean solids; and A100145 for more on structured polyhedral numbers.
Cf. also A079588.

Programs

Formula

a(n) = (1/6)*(48*n^3 - 60*n^2 + 18*n).
a(n) = A079588(n-1) = n*(2*n-1)*(4*n-3). - R. J. Mathar, Sep 02 2008
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (1+(n-1))*(1+2*(n-1))*(1+4*(n-1)).
G.f.: x*(1 + 26*x + 21*x^2)/(1-x)^4. (End)
E.g.f.: x*(1 + 14*x + 8*x^2)*exp(x). - G. C. Greubel, Oct 18 2018
From Amiram Eldar, Sep 20 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(2)*log(sqrt(2)+1)/3 + log(2)/3 - (3 - 2*sqrt(2))*Pi/6. (End)