A100156 Structured truncated tetrahedral numbers.
1, 12, 44, 108, 215, 376, 602, 904, 1293, 1780, 2376, 3092, 3939, 4928, 6070, 7376, 8857, 10524, 12388, 14460, 16751, 19272, 22034, 25048, 28325, 31876, 35712, 39844, 44283, 49040, 54126, 59552, 65329, 71468, 77980, 84876, 92167, 99864, 107978, 116520, 125501, 134932
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(1/6)*(11*n^3-3*n^2-2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
-
Mathematica
Table[(11n^3-3n^2-2n)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,12,44,108},40] (* Harvey P. Dale, Sep 28 2011 *)
-
PARI
vector(50, n, (11*n^3 - 3*n^2 - 2*n)/6) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = (1/6)*(11*n^3 - 3*n^2 - 2*n).
From Harvey P. Dale, Sep 28 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=12, a(2)=44, a(3)=108.
G.f.: x*(2*x*(x+4)+1)/(x-1)^4. (End)
E.g.f.: x*(6 + 30*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Oct 18 2018