cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100156 Structured truncated tetrahedral numbers.

Original entry on oeis.org

1, 12, 44, 108, 215, 376, 602, 904, 1293, 1780, 2376, 3092, 3939, 4928, 6070, 7376, 8857, 10524, 12388, 14460, 16751, 19272, 22034, 25048, 28325, 31876, 35712, 39844, 44283, 49040, 54126, 59552, 65329, 71468, 77980, 84876, 92167, 99864, 107978, 116520, 125501, 134932
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100155, A100157 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated tetrahedral numbers A005906.

Programs

  • Magma
    [(1/6)*(11*n^3-3*n^2-2*n): n in [1..40]]; // Vincenzo Librandi, Jul 19 2011
    
  • Mathematica
    Table[(11n^3-3n^2-2n)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,12,44,108},40] (* Harvey P. Dale, Sep 28 2011 *)
  • PARI
    vector(50, n, (11*n^3 - 3*n^2 - 2*n)/6) \\ G. C. Greubel, Oct 18 2018

Formula

a(n) = (1/6)*(11*n^3 - 3*n^2 - 2*n).
From Harvey P. Dale, Sep 28 2011: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=12, a(2)=44, a(3)=108.
G.f.: x*(2*x*(x+4)+1)/(x-1)^4. (End)
E.g.f.: x*(6 + 30*x + 11*x^2)*exp(x)/6. - G. C. Greubel, Oct 18 2018