A100164 Structured rhombic triacontahedral numbers (vertex structure 11).
1, 32, 143, 384, 805, 1456, 2387, 3648, 5289, 7360, 9911, 12992, 16653, 20944, 25915, 31616, 38097, 45408, 53599, 62720, 72821, 83952, 96163, 109504, 124025, 139776, 156807, 175168, 194909, 216080, 238731, 262912, 288673, 316064, 345135, 375936, 408517, 442928
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(1/6)*(50*n^3-60*n^2+16*n): n in [1..40]]; // Vincenzo Librandi, Jul 25 2011
-
Mathematica
a[n_] := (n*(5*n - 2)*(5*n - 4))/3; Array[a, 30] (* Amiram Eldar, Sep 20 2022 *)
Formula
a(n) = (1/6)*(50*n^3 - 60*n^2 + 16*n) = (1/3)*n*(5*n-2)*(5*n-4).
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (5*(n-1) + 1)*(5*(n-1) + 3)*(5*(n-1) + 5)/15.
G.f.: x*(1 + 28*x + 21*x^2)/(1-x)^4. (End)
Sum_{n>=1} 1/a(n) = 3*sqrt((25-2*sqrt(5))/5)*Pi/16 + 9*sqrt(5)*log(phi)/16 - 15*log(5)/32, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 20 2022
Comments