cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100164 Structured rhombic triacontahedral numbers (vertex structure 11).

Original entry on oeis.org

1, 32, 143, 384, 805, 1456, 2387, 3648, 5289, 7360, 9911, 12992, 16653, 20944, 25915, 31616, 38097, 45408, 53599, 62720, 72821, 83952, 96163, 109504, 124025, 139776, 156807, 175168, 194909, 216080, 238731, 262912, 288673, 316064, 345135, 375936, 408517, 442928
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

Also structured triakis icosahedral numbers (vertex structure 11) (cf. A100172 = alternate vertex).

Crossrefs

Cf. A100165 (alternate vertex), A100145 for more on structured polyhedral numbers.

Programs

  • Magma
    [(1/6)*(50*n^3-60*n^2+16*n): n in [1..40]]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    a[n_] := (n*(5*n - 2)*(5*n - 4))/3; Array[a, 30] (* Amiram Eldar, Sep 20 2022 *)

Formula

a(n) = (1/6)*(50*n^3 - 60*n^2 + 16*n) = (1/3)*n*(5*n-2)*(5*n-4).
From Jaume Oliver Lafont, Sep 08 2009: (Start)
a(n) = (5*(n-1) + 1)*(5*(n-1) + 3)*(5*(n-1) + 5)/15.
G.f.: x*(1 + 28*x + 21*x^2)/(1-x)^4. (End)
Sum_{n>=1} 1/a(n) = 3*sqrt((25-2*sqrt(5))/5)*Pi/16 + 9*sqrt(5)*log(phi)/16 - 15*log(5)/32, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 20 2022