cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100182 Structured tetragonal anti-prism numbers.

Original entry on oeis.org

1, 8, 28, 68, 135, 236, 378, 568, 813, 1120, 1496, 1948, 2483, 3108, 3830, 4656, 5593, 6648, 7828, 9140, 10591, 12188, 13938, 15848, 17925, 20176, 22608, 25228, 28043, 31060, 34286, 37728, 41393, 45288, 49420, 53796, 58423, 63308, 68458, 73880, 79581, 85568, 91848, 98428, 105315, 112516
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

If offset is changed to 0, this is the number of magic labelings of the 5-node, 8-edge graph formed from a square with both diagonals drawn and a node at the center [Stanley]. - N. J. A. Sloane, Jul 07 2014

Crossrefs

Cf. A100185 - structured anti-prisms; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(7*n^3-3*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(7*n^3 - 3*n^2 + 2*n)/6, {n,1,40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 28, 68}, 40] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, (7*n^3 -3*n^2 +2*n)/6) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(7*n^3 - 3*n^2 + 2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 4*x + 2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
E.g.f.: (6*x +18*x^2 +7*x^3)*exp(x)/6. - G. C. Greubel, Nov 08 2018
a(n) = binomial(n,3) + n^3. - Pedro Caceres, Jul 28 2019