A100187 Structured octagonal anti-diamond numbers (vertex structure 7).
1, 18, 77, 204, 425, 766, 1253, 1912, 2769, 3850, 5181, 6788, 8697, 10934, 13525, 16496, 19873, 23682, 27949, 32700, 37961, 43758, 50117, 57064, 64625, 72826, 81693, 91252, 101529, 112550, 124341, 136928
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Crossrefs
Programs
-
Magma
[(1/6)*(26*n^3-30*n^2+10*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
-
Mathematica
Table[(26n^3-30n^2+10n)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,77,204},40] (* Harvey P. Dale, Dec 24 2012 *)
-
PARI
vector(40, n, (13*n^3 -15*n^2 +5*n)/3) \\ G. C. Greubel, Nov 08 2018
Formula
a(n) = (1/6)*(26*n^3 - 30*n^2 + 10*n).
G.f.: x*(1 + 14*x + 11*x^2)/(1-x)^4. - Colin Barker, Jan 19 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=18, a(3)=77, a(4)=204. - Harvey P. Dale, Dec 24 2012
E.g.f.: (3*x + 24*x^2 + 13*x^3)*exp(x)/3. - G. C. Greubel, Nov 08 2018