cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100212 Expansion of 4*x^4*(2 + x)/(1 - 2*x + 2*x^2 - 4*x^4 + 8*x^5 - 8*x^6).

Original entry on oeis.org

0, 0, 0, 0, 8, 20, 24, 8, 0, 0, 0, 0, 128, 320, 384, 128, 0, 0, 0, 0, 2048, 5120, 6144, 2048, 0, 0, 0, 0, 32768, 81920, 98304, 32768, 0, 0, 0, 0, 524288, 1310720, 1572864, 524288, 0, 0, 0, 0, 8388608, 20971520, 25165824, 8388608, 0, 0, 0, 0, 134217728, 335544320
Offset: 0

Views

Author

Creighton Dement, Nov 08 2004

Keywords

Comments

a(n) = 0 iff n == {0, 1, 2 or 3} (mod 8). - Robert G. Wilson v, Nov 12 2004

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) )); // G. C. Greubel, Apr 01 2024
    
  • Mathematica
    CoefficientList[ Series[4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6), {x, 0, 55}], x] (* Robert G. Wilson v, Nov 12 2004 *)
    LinearRecurrence[{2,-2,0,4,-8,8},{0,0,0,0,8,20},60] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    Vec(4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A100212_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) ).list()
    A100212_list(60) # G. C. Greubel, Apr 01 2024

Formula

a(8n+4) = a(8n+7) = 2^(4n+3), a(8n+5) = (5/2)*2^(4n+3), a(8n+6) = 3*2^(4n+3), a(8n+8) = 0, a(8n+9) = 0, a(8n+10) = 0, a(8n+11) = 0.
(a(n)) = negseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=20, a(n) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6). - Harvey P. Dale, Oct 10 2012

Extensions

More terms from Robert G. Wilson v, Nov 12 2004