cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100230 Main diagonal of triangle A100229.

Original entry on oeis.org

1, 2, 10, 35, 118, 392, 1297, 4286, 14158, 46763, 154450, 510116, 1684801, 5564522, 18378370, 60699635, 200477278, 662131472, 2186871697, 7222746566, 23855111398, 78788080763, 260219353690, 859446141836, 2838557779201
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2004

Keywords

Comments

Let F(x) = Product_{n >= 1} (1 + x^(4*n + 1))/(1 - x^(4*n + 3)). Let alpha = (1/2)*(3 - sqrt(13)). This sequence occurs as partial numerators in the simple continued fraction expansion of the real number F(alpha) = 1.34372 29374 22358 27049 ... = 1 + 1/(2 + 1/(1 + 1/(10 + 1/(35 + 1/(1 + 1/(118 + 1/(392 + 1/(1 + ...)))))))). - Peter Bala, Oct 17 2019

Crossrefs

Equals A006497(n) - 1.

Programs

  • Mathematica
    LinearRecurrence[{4,-2,-1},{1,2,10},30] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    a(n)=if(n==0,1,n*polcoeff(log((1-x)/(1-3*x-x^2)+x*O(x^n)),n))

Formula

a(n) = 3*a(n-1) + a(n-2) + 3 for n>1, with a(0)=1, a(1)=2.
G.f.: Sum_{n>=1} a(n)*x^n/n = log((1-x)/(1-3*x-x^2)).
a(0)=1, a(1)=2, a(2)=10, a(n)=4*a(n-1)-2*a(n-2)-a(n-3). [Harvey P. Dale, May 06 2012]