cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100304 Expansion of (1 - x - 6*x^2)/(1 - x - 8*x^2).

Original entry on oeis.org

1, 0, 2, 2, 18, 34, 178, 450, 1874, 5474, 20466, 64258, 227986, 742050, 2565938, 8502338, 29029842, 97048546, 329287282, 1105675650, 3739973906, 12585379106, 42505170354, 143188203202, 483229566034, 1628735191650, 5494571719922, 18524453253122, 62481027012498
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the 'internal' nodes. (Spectrum : [0^3; 1; (1-sqrt(33))/2;(1+sqrt(33))/2]). a(n) counts closed walks of length n at each of the extremity nodes.

Crossrefs

Essentially half A100303.
Cf. A015443, A100302 (partial sums), A100305.

Programs

  • Magma
    [1] cat [n le 2 select 2*(n-1) else Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 04 2023
    
  • Mathematica
    LinearRecurrence[{1,8},{1,0,2},27] (* Stefano Spezia, Sep 08 2022 *)
  • SageMath
    def A100304(n): return (3/4)*int(n==0) + 2*lucas_number1(n-1, 1, -8)
    [A100304(n) for n in range(31)] # G. C. Greubel, Feb 04 2023

Formula

a(n) = 3*0^n/4 + (2/sqrt(33))*( ((1 + sqrt(33))/2)^(n-1) - ((1 - sqrt(33))/2)^(n-1) ).
E.g.f.: (99 + exp(x/2)*(33*cosh(sqrt(33)*x/2) - sqrt(33)*sinh(sqrt(33)*x/2)))/132. - Stefano Spezia, Sep 08 2022
a(n) = (3/4)*[n=0] + 2*A015443(n-2). - G. C. Greubel, Feb 04 2023