cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100303 Expansion of (1 - x - 4*x^2)/(1 - x - 8*x^2).

Original entry on oeis.org

1, 0, 4, 4, 36, 68, 356, 900, 3748, 10948, 40932, 128516, 455972, 1484100, 5131876, 17004676, 58059684, 194097092, 658574564, 2211351300, 7479947812, 25170758212, 85010340708, 286376406404, 966459132068, 3257470383300, 10989143439844, 37048906506244, 124962054024996
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. (Spectrum : [0; 1^3; (1-sqrt(33))/2;(1+sqrt(33))/2]). a(n) counts closed walks of length n at each of the internal nodes.

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 4*(n-1) else Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 04 2023
    
  • Mathematica
    CoefficientList[Series[(1-x-4x^2)/(1-x-8x^2),{x,0,30}],x] (* Harvey P. Dale, Dec 01 2013 *)
    LinearRecurrence[{1,8}, {1,0,4}, 31] (* G. C. Greubel, Feb 04 2023 *)
  • SageMath
    def A100303(n): return (1/2)*int(n==0) + 4*lucas_number1(n-1, 1, -8)
    [A100303(n) for n in range(31)] # G. C. Greubel, Feb 04 2023

Formula

a(n) = 0^n/2 + (4/sqrt(33))*( ((1 + sqrt(33))/2)^(n-1) - ((1 - sqrt(33))/2)^(n-1) ).
a(n) = (1/2)*(A015443(n) - A015443(n-1)), n > 0. - Ralf Stephan, Jul 21 2013
E.g.f.: (33 + exp(x/2)*(33*cosh(sqrt(33)*x/2) - sqrt(33)*sinh(sqrt(33)*x/2)))/66. - Stefano Spezia, Sep 08 2022
a(n) = (1/2)*[n=0] + 4*A015443(n). - G. C. Greubel, Feb 04 2023

A100302 Expansion of (1 - x - 6*x^2)/((1 - x)*(1 - x - 8*x^2)).

Original entry on oeis.org

1, 1, 3, 5, 23, 57, 235, 685, 2559, 8033, 28499, 92757, 320743, 1062793, 3628731, 12131069, 41160911, 138209457, 467496739, 1573172389, 5313146295, 17898525401, 60403695755, 203591898957, 686821464991, 2315556656641, 7810128376563, 26334581629685, 88815608642183
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. a(n) counts closed walks of length n at each of the extremity nodes.

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 04 2023
    
  • Mathematica
    LinearRecurrence[{2,7,-8},{1,1,3},29] (* Stefano Spezia, Sep 08 2022 *)
  • SageMath
    def A100302(n): return (3 + lucas_number1(n+1, 1, -8))/4
    [A100302(n) for n in range(31)] # G. C. Greubel, Feb 04 2023

Formula

a(n) = 2*a(n-1) + 7*a(n-2) - 8*a(n-3).
a(n) = 3/4 + (1/(4*sqrt(33)))*(((1 + sqrt(33))/2)^(n+1) - ((1 - sqrt(33))/2)^(n+1)).
E.g.f.: 3*exp(x)/4 + exp(x/2)*(33*cosh(sqrt(33)*x/2) + sqrt(33)*sinh(sqrt(33)*x/2))/132. - Stefano Spezia, Sep 08 2022
a(n) = (1/4)*(3 + A015443(n+1)). - G. C. Greubel, Feb 04 2023

A100305 Expansion of (1 - x - 4*x^2)/(1 - 2*x - 7*x^2 + 8*x^3).

Original entry on oeis.org

1, 1, 5, 9, 45, 113, 469, 1369, 5117, 16065, 56997, 185513, 641485, 2125585, 7257461, 24262137, 82321821, 276418913, 934993477, 3146344777, 10626292589, 35797050801, 120807391509, 407183797913, 1373642929981, 4631113313281, 15620256753125, 52669163259369, 177631217284365
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the 'internal' nodes. (Spectrum : [0^3; 1; (1-sqrt(33))/2;(1+sqrt(33))/2]). a(n) counts closed walks of length n at each of the 'internal' nodes.

Crossrefs

Partial sums of A100303.

Programs

  • Magma
    I:=[1,1,5]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..41]]; // G. C. Greubel, Feb 03 2023
    
  • Mathematica
    CoefficientList[Series[(1-x-4x^2)/(1-2x-7x^2+8x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,7,-8},{1,1,5},40] (* Harvey P. Dale, Oct 05 2012 *)
  • SageMath
    def A100305(n): return (1/2)*(1 + lucas_number1(n+1, 1, -8))
    [A100305(n) for n in range(41)] # G. C. Greubel, Feb 03 2023

Formula

a(n) = 2*a(n-1) + 7*a(n-2) - 8*a(n-3).
a(n) = 1/2 + 2^(-n)*(sqrt(33)/132)*((1 + sqrt(33))^(n+1) - (1 - sqrt(33))^(n+1)).
E.g.f.: exp(x)/2 + exp(x/2)*(33*cosh(sqrt(33)*x/2) + sqrt(33)*sinh(sqrt(33)*x/2))/66. - Stefano Spezia, Sep 08 2022
a(n) = (1/2)*(1 + (2*sqrt(2)*i)^n*ChebyshevU(n, -i/(4*sqrt(2)))). - G. C. Greubel, Feb 03 2023
Showing 1-3 of 3 results.