A015443
Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).
Original entry on oeis.org
1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, 113993, 371025, 1282969, 4251169, 14514921, 48524273, 164643641, 552837825, 1869986953, 6292689553, 21252585177, 71594101601, 241614783017, 814367595825, 2747285859961
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Joerg Arndt, Matters Computational (The Fxtbook), p. 318
- Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
- Index entries for linear recurrences with constant coefficients, signature (1,8)
-
[ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+8*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
-
CoefficientList[Series[1/(1-x-8*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 30 2017 *)
-
Vec(1/(1-x-8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
-
[lucas_number1(n,1,-8) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
A100302
Expansion of (1 - x - 6*x^2)/((1 - x)*(1 - x - 8*x^2)).
Original entry on oeis.org
1, 1, 3, 5, 23, 57, 235, 685, 2559, 8033, 28499, 92757, 320743, 1062793, 3628731, 12131069, 41160911, 138209457, 467496739, 1573172389, 5313146295, 17898525401, 60403695755, 203591898957, 686821464991, 2315556656641, 7810128376563, 26334581629685, 88815608642183
Offset: 0
-
I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 04 2023
-
LinearRecurrence[{2,7,-8},{1,1,3},29] (* Stefano Spezia, Sep 08 2022 *)
-
def A100302(n): return (3 + lucas_number1(n+1, 1, -8))/4
[A100302(n) for n in range(31)] # G. C. Greubel, Feb 04 2023
A100304
Expansion of (1 - x - 6*x^2)/(1 - x - 8*x^2).
Original entry on oeis.org
1, 0, 2, 2, 18, 34, 178, 450, 1874, 5474, 20466, 64258, 227986, 742050, 2565938, 8502338, 29029842, 97048546, 329287282, 1105675650, 3739973906, 12585379106, 42505170354, 143188203202, 483229566034, 1628735191650, 5494571719922, 18524453253122, 62481027012498
Offset: 0
-
[1] cat [n le 2 select 2*(n-1) else Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 04 2023
-
LinearRecurrence[{1,8},{1,0,2},27] (* Stefano Spezia, Sep 08 2022 *)
-
def A100304(n): return (3/4)*int(n==0) + 2*lucas_number1(n-1, 1, -8)
[A100304(n) for n in range(31)] # G. C. Greubel, Feb 04 2023
A100305
Expansion of (1 - x - 4*x^2)/(1 - 2*x - 7*x^2 + 8*x^3).
Original entry on oeis.org
1, 1, 5, 9, 45, 113, 469, 1369, 5117, 16065, 56997, 185513, 641485, 2125585, 7257461, 24262137, 82321821, 276418913, 934993477, 3146344777, 10626292589, 35797050801, 120807391509, 407183797913, 1373642929981, 4631113313281, 15620256753125, 52669163259369, 177631217284365
Offset: 0
-
I:=[1,1,5]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..41]]; // G. C. Greubel, Feb 03 2023
-
CoefficientList[Series[(1-x-4x^2)/(1-2x-7x^2+8x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,7,-8},{1,1,5},40] (* Harvey P. Dale, Oct 05 2012 *)
-
def A100305(n): return (1/2)*(1 + lucas_number1(n+1, 1, -8))
[A100305(n) for n in range(41)] # G. C. Greubel, Feb 03 2023
Showing 1-4 of 4 results.
Comments