cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A015443 Generalized Fibonacci numbers: a(n) = a(n-1) + 8*a(n-2).

Original entry on oeis.org

1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, 113993, 371025, 1282969, 4251169, 14514921, 48524273, 164643641, 552837825, 1869986953, 6292689553, 21252585177, 71594101601, 241614783017, 814367595825, 2747285859961
Offset: 0

Views

Author

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. a(n-1) counts walks of length n between adjacent nodes. - Paul Barry, Nov 12 2004
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 9*a(n-2) equals the number of 9-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 1, 6, 1, 24, 6, 16, 1, 6, 24, 110, 6, 56, 16, 24, 2, 16, 6, 60, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+8*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    CoefficientList[Series[1/(1-x-8*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    Vec(1/(1-x-8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014
  • Sage
    [lucas_number1(n,1,-8) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = (((1+sqrt(33))/2)^(n+1) - ((1-sqrt(33))/2)^(n+1))/sqrt(33).
a(n) = Sum_{k=0..n} A109466(n,k)*(-8)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1-x-8*x^2). - R. J. Mathar, Apr 07 2011
a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*33^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014

A100302 Expansion of (1 - x - 6*x^2)/((1 - x)*(1 - x - 8*x^2)).

Original entry on oeis.org

1, 1, 3, 5, 23, 57, 235, 685, 2559, 8033, 28499, 92757, 320743, 1062793, 3628731, 12131069, 41160911, 138209457, 467496739, 1573172389, 5313146295, 17898525401, 60403695755, 203591898957, 686821464991, 2315556656641, 7810128376563, 26334581629685, 88815608642183
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. a(n) counts closed walks of length n at each of the extremity nodes.

Crossrefs

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..31]]; // G. C. Greubel, Feb 04 2023
    
  • Mathematica
    LinearRecurrence[{2,7,-8},{1,1,3},29] (* Stefano Spezia, Sep 08 2022 *)
  • SageMath
    def A100302(n): return (3 + lucas_number1(n+1, 1, -8))/4
    [A100302(n) for n in range(31)] # G. C. Greubel, Feb 04 2023

Formula

a(n) = 2*a(n-1) + 7*a(n-2) - 8*a(n-3).
a(n) = 3/4 + (1/(4*sqrt(33)))*(((1 + sqrt(33))/2)^(n+1) - ((1 - sqrt(33))/2)^(n+1)).
E.g.f.: 3*exp(x)/4 + exp(x/2)*(33*cosh(sqrt(33)*x/2) + sqrt(33)*sinh(sqrt(33)*x/2))/132. - Stefano Spezia, Sep 08 2022
a(n) = (1/4)*(3 + A015443(n+1)). - G. C. Greubel, Feb 04 2023

A100304 Expansion of (1 - x - 6*x^2)/(1 - x - 8*x^2).

Original entry on oeis.org

1, 0, 2, 2, 18, 34, 178, 450, 1874, 5474, 20466, 64258, 227986, 742050, 2565938, 8502338, 29029842, 97048546, 329287282, 1105675650, 3739973906, 12585379106, 42505170354, 143188203202, 483229566034, 1628735191650, 5494571719922, 18524453253122, 62481027012498
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the 'internal' nodes. (Spectrum : [0^3; 1; (1-sqrt(33))/2;(1+sqrt(33))/2]). a(n) counts closed walks of length n at each of the extremity nodes.

Crossrefs

Essentially half A100303.
Cf. A015443, A100302 (partial sums), A100305.

Programs

  • Magma
    [1] cat [n le 2 select 2*(n-1) else Self(n-1) +8*Self(n-2): n in [1..30]]; // G. C. Greubel, Feb 04 2023
    
  • Mathematica
    LinearRecurrence[{1,8},{1,0,2},27] (* Stefano Spezia, Sep 08 2022 *)
  • SageMath
    def A100304(n): return (3/4)*int(n==0) + 2*lucas_number1(n-1, 1, -8)
    [A100304(n) for n in range(31)] # G. C. Greubel, Feb 04 2023

Formula

a(n) = 3*0^n/4 + (2/sqrt(33))*( ((1 + sqrt(33))/2)^(n-1) - ((1 - sqrt(33))/2)^(n-1) ).
E.g.f.: (99 + exp(x/2)*(33*cosh(sqrt(33)*x/2) - sqrt(33)*sinh(sqrt(33)*x/2)))/132. - Stefano Spezia, Sep 08 2022
a(n) = (3/4)*[n=0] + 2*A015443(n-2). - G. C. Greubel, Feb 04 2023

A100305 Expansion of (1 - x - 4*x^2)/(1 - 2*x - 7*x^2 + 8*x^3).

Original entry on oeis.org

1, 1, 5, 9, 45, 113, 469, 1369, 5117, 16065, 56997, 185513, 641485, 2125585, 7257461, 24262137, 82321821, 276418913, 934993477, 3146344777, 10626292589, 35797050801, 120807391509, 407183797913, 1373642929981, 4631113313281, 15620256753125, 52669163259369, 177631217284365
Offset: 0

Views

Author

Paul Barry, Nov 12 2004

Keywords

Comments

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the 'internal' nodes. (Spectrum : [0^3; 1; (1-sqrt(33))/2;(1+sqrt(33))/2]). a(n) counts closed walks of length n at each of the 'internal' nodes.

Crossrefs

Partial sums of A100303.

Programs

  • Magma
    I:=[1,1,5]; [n le 3 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3): n in [1..41]]; // G. C. Greubel, Feb 03 2023
    
  • Mathematica
    CoefficientList[Series[(1-x-4x^2)/(1-2x-7x^2+8x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,7,-8},{1,1,5},40] (* Harvey P. Dale, Oct 05 2012 *)
  • SageMath
    def A100305(n): return (1/2)*(1 + lucas_number1(n+1, 1, -8))
    [A100305(n) for n in range(41)] # G. C. Greubel, Feb 03 2023

Formula

a(n) = 2*a(n-1) + 7*a(n-2) - 8*a(n-3).
a(n) = 1/2 + 2^(-n)*(sqrt(33)/132)*((1 + sqrt(33))^(n+1) - (1 - sqrt(33))^(n+1)).
E.g.f.: exp(x)/2 + exp(x/2)*(33*cosh(sqrt(33)*x/2) + sqrt(33)*sinh(sqrt(33)*x/2))/66. - Stefano Spezia, Sep 08 2022
a(n) = (1/2)*(1 + (2*sqrt(2)*i)^n*ChebyshevU(n, -i/(4*sqrt(2)))). - G. C. Greubel, Feb 03 2023
Showing 1-4 of 4 results.