cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A109466 Riordan array (1, x(1-x)).

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -2, 1, 0, 0, 1, -3, 1, 0, 0, 0, 3, -4, 1, 0, 0, 0, -1, 6, -5, 1, 0, 0, 0, 0, -4, 10, -6, 1, 0, 0, 0, 0, 1, -10, 15, -7, 1, 0, 0, 0, 0, 0, 5, -20, 21, -8, 1, 0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1, 0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1, 0, 0, 0, 0, 0, 0, 1, -21, 70, -84, 45, -11, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Aug 28 2005

Keywords

Comments

Inverse is Riordan array (1, xc(x)) (A106566).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008
Coefficient array of the polynomials Chebyshev_U(n, sqrt(x)/2)*(sqrt(x))^n. - Paul Barry, Sep 28 2009

Examples

			Rows begin:
  1;
  0,  1;
  0, -1,  1;
  0,  0, -2,  1;
  0,  0,  1, -3,  1;
  0,  0,  0,  3, -4,   1;
  0,  0,  0, -1,  6,  -5,   1;
  0,  0,  0,  0, -4,  10,  -6,   1;
  0,  0,  0,  0,  1, -10,  15,  -7,  1;
  0,  0,  0,  0,  0,   5, -20,  21, -8,  1;
  0,  0,  0,  0,  0,  -1,  15, -35, 28, -9, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0,    1,
  0,   -1,    1,
  0,   -1,   -1,   1,
  0,   -2,   -1,  -1,   1,
  0,   -5,   -2,  -1,  -1,  1,
  0,  -14,   -5,  -2,  -1, -1,  1,
  0,  -42,  -14,  -5,  -2, -1, -1,  1,
  0, -132,  -42, -14,  -5, -2, -1, -1,  1,
  0, -429, -132, -42, -14, -5, -2, -1, -1, 1 (End)
		

Crossrefs

Cf. A026729 (unsigned version), A000108, A030528, A124644.

Programs

  • Magma
    /* As triangle */ [[(-1)^(n-k)*Binomial(k, n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jan 14 2016
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-#)&, 13] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

Number triangle T(n, k) = (-1)^(n-k)*binomial(k, n-k).
T(n, k)*2^(n-k) = A110509(n, k); T(n, k)*3^(n-k) = A110517(n, k).
Sum_{k=0..n} T(n,k)*A000108(k)=1. - Philippe Deléham, Jun 11 2007
From Philippe Deléham, Oct 30 2008: (Start)
Sum_{k=0..n} T(n,k)*A144706(k) = A082505(n+1).
Sum_{k=0..n} T(n,k)*A002450(k) = A100335(n).
Sum_{k=0..n} T(n,k)*A001906(k) = A100334(n).
Sum_{k=0..n} T(n,k)*A015565(k) = A099322(n).
Sum_{k=0..n} T(n,k)*A003462(k) = A106233(n). (End)
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1), A000012(n), A010892(n), A107920(n+1), A106852(n), A106853(n), A106854(n), A145934(n), A145976(n), A145978(n), A146078(n), A146080(n), A146083(n), A146084(n) for x = -12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. - Philippe Deléham, Oct 27 2008
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A010892(n), A099087(n), A057083(n), A001787(n+1), A030191(n), A030192(n), A030240(n), A057084(n), A057085(n+1), A057086(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively. - Philippe Deléham, Oct 28 2008
G.f.: 1/(1-y*x+y*x^2). - Philippe Deléham, Dec 15 2011
T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(n,0) = 0^n. - Philippe Deléham, Feb 15 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = F(n+1,-x) where F(n,x)is the n-th Fibonacci polynomial in x defined in A011973. - Philippe Deléham, Feb 22 2013
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Feb 26 2013
Sum_{k=0..n} T(n,k)*T(n+1,k) = -A110320(n). - Philippe Deléham, Feb 26 2013
For T(0,0) = 0, the signed triangle below has the o.g.f. G(x,t) = [t*x(1-x)]/[1-t*x(1-x)] = L[t*Cinv(x)] where L(x) = x/(1-x) and Cinv(x)=x(1-x) with the inverses Linv(x) = x/(1+x) and C(x)= [1-sqrt(1-4*x)]/2, an o.g.f. for the shifted Catalan numbers A000108, so the inverse o.g.f. is Ginv(x,t) = C[Linv(x)/t] = [1-sqrt[1-4*x/(t(1+x))]]/2 (cf. A124644 and A030528). - Tom Copeland, Jan 19 2016

A057088 Scaled Chebyshev U-polynomials evaluated at i*sqrt(5)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 5, 30, 175, 1025, 6000, 35125, 205625, 1203750, 7046875, 41253125, 241500000, 1413765625, 8276328125, 48450468750, 283633984375, 1660422265625, 9720281250000, 56903517578125, 333118994140625, 1950112558593750, 11416157763671875, 66831351611328125, 391237546875000000
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->11111, 1->111110, starting from 0. The number of 1's and 0's of this word is 5*a(n-1) and 5*a(n-2), resp.
a(n) / a(n-1) converges to (5 + (3 * sqrt(5))) / 2 as n approaches infinity. (5 + (3 * sqrt(5))) / 2 can also be written as phi^2 + (2 * phi), phi^3 + phi, phi + sqrt(5) + 2, (3 * phi) + 1, (3 * phi^2) - 2, phi^4 - 1 and (5 + (3 * (L(n) / F(n)))) / 2, where L(n) is the n-th Lucas number and F(n) is the n-th Fibonacci number as n approaches infinity. - Ross La Haye, Aug 18 2003, on another version
Pisano period lengths: 1, 3, 3, 6, 1, 3, 24, 12, 9, 3, 10, 6, 56, 24, 3, 24,288, 9, 18, 6, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1) + 5*Self(n-2): n in [0..30]]; // G. C. Greubel, Jan 16 2018
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+5*a[n-2]od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    LinearRecurrence[{5,5}, {1,5}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(1/(1 - 5*x - 5*x^2)) \\ G. C. Greubel, Jan 16 2018
    
  • Sage
    [lucas_number1(n,5,-5) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*sqrt(5))*(-i*sqrt(5))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 5*x - 5*x^2).
a(n) = (1/3)*Sum_{k=0..n} binomial(n, k)*Fibonacci(k)*3^k. - Benoit Cloitre, Oct 25 2003
a(n) = ((5 + 3*sqrt(5))/2)^n(1/2 + sqrt(5)/6) + (1/2 - sqrt(5)/6)((5 - 3*sqrt(5))/2)^n. - Paul Barry, Sep 22 2004
(a(n)) appears to be given by the floretion - 0.75'i - 0.5'j + 'k - 0.75i' + 0.5j' + 0.5k' + 1.75'ii' - 1.25'jj' + 1.75'kk' - 'ij' - 0.5'ji' - 0.75'jk' - 0.75'kj' - 1.25e ("jes"). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} 4^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
G.f.: G(0)/(2-5*x), where G(k)= 1 + 1/(1 - x*(9*k-5)/(x*(9*k+4) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
From Ehren Metcalfe, Nov 18 2017: (Start)
With F(n) = A000045(n), L(n) = A000032(n), beta = (1-sqrt(5))/2:
a(2*n-1) = 5^n*F(4*n)/3 = (5^(n-1/2)*L(4*n) - 2*5^(n-1/2)*beta^(4*n))/3.
a(2*n) = 5^n*L(4*n+2)/3 = (5^(n+1/2)*F(4*n+2) + 2*5^n*beta^(4*n+2))/3.
a(n) = round 5^((n+1)/2)*F(2*(n+1))/3.
a(n) = round 5^(n/2)*L(2*(n+1))/3. (End)

A053404 Expansion of 1/((1+3*x)*(1-4*x)).

Original entry on oeis.org

1, 1, 13, 25, 181, 481, 2653, 8425, 40261, 141361, 624493, 2320825, 9814741, 37664641, 155441533, 607417225, 2472715621, 9761722321, 39434309773, 156574977625, 629786694901, 2508686426401, 10066126765213, 40170363882025
Offset: 0

Views

Author

Barry E. Williams, Jan 07 2000

Keywords

Comments

Hankel transform is := 1,12,0,0,0,... - Philippe Deléham, Nov 02 2008
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 13*a(n-2) equals the number of 13-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    [((4^(n+1)) - (-3)^(n+1))/7: n in [0..30]]; // G. C. Greubel, Jan 16 2018
  • Maple
    seq(simplify(hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -48)), n = 1..40); # Peter Bala, Jul 05 2025
  • Mathematica
    CoefficientList[Series[1/((1 + 3 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 06 2014 *)
  • PARI
    a(n)=([0,1; 12,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number1(n,1,-12) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = ((4^(n+1))-(-3)^(n+1))/7.
a(n) = a(n-1) + 12*a(n-2), n > 1; a(0)=1, a(1)=1.
From Paul Barry, Jul 30 2004: (Start)
Convolution of 4^n and (-3)^n.
G.f.: 1/((1+3x)(1-4x)); a(n) = Sum_{k=0..n, 4^k*(-3)^(n-k)} = Sum_{k=0..n, (-3)^k*4^(n-k)}. (End)
a(n) = Sum_{k, 0<=k<=n} A109466(n,k)*(-12)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (sum_{1<=k<=n+1, k odd} C(n+1,k)*7^(k-1))/2^n. - Vladimir Shevelev, Feb 05 2014
From Peter Bala, Jun 27 2025: (Start)
a(n) = hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -48) for n >= 1.
The following products telescope:
Product_{k >= 0} (1 + 12^k/a(2*k+1)) = 8.
Product_{k >= 1} (1 - 12^k/a(2*k+1)) = 4/25.
Product_{k >= 0} (1 + (-12)^k/a(2*k+1)) = 8/7.
Product_{k >= 1} (1 - (-12)^k/a(2*k+1)) = 28/25. (End)

Extensions

More terms from James Sellers, Feb 02 2000

A015447 Generalized Fibonacci numbers: a(n) = a(n-1) + 11*a(n-2).

Original entry on oeis.org

1, 1, 12, 23, 155, 408, 2113, 6601, 29844, 102455, 430739, 1557744, 6295873, 23431057, 92685660, 350427287, 1369969547, 5224669704, 20294334721, 77765701465, 301003383396, 1156426099511, 4467463316867, 17188150411488
Offset: 0

Views

Author

Keywords

Comments

The compositions of n in which each positive integer is colored by one of p different colors are called p-colored compositions of n. For n>=2, 12*a(n-2) equals the number of 12-colored compositions of n, with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011

Crossrefs

Programs

Formula

a(n) = ( ( (1+3*sqrt(5))/2 )^(n+1) - ( (1-3*sqrt(5))/2 )^(n+1) )/(3*sqrt(5)).
a(n-1) = (1/3)*(-1)^n*Sum_{i=0..n} (-3)^i*Fibonacci(i)*C(n, i). - Benoit Cloitre, Mar 06 2004
a(n) = Sum_{k=0..n} A109466(n,k)*(-11)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1 - x - 11*x^2). - Harvey P. Dale, May 08 2011
a(n) = ( Sum_{1<=k<=n+1, k odd} C(n+1,k)*45^((k-1)/2) )/2^n. - Vladimir Shevelev, Feb 05 2014

A015445 Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2).

Original entry on oeis.org

1, 1, 10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, 627760, 2295721, 7945561, 28607050, 100117099, 357580549, 1258634440, 4476859381, 15804569341, 56096303770, 198337427839, 703204161769, 2488241012320, 8817078468241, 31211247579121, 110564953793290
Offset: 0

Views

Author

Keywords

Comments

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 10*a(n-2) equals the number of 10-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011

Crossrefs

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
    
  • Maple
    m:=25; S:=series(1/(1-x-9*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020
  • Mathematica
    CoefficientList[Series[1/(1-x-9*x^2), {x,0,25}], x] (* or *) LinearRecurrence[{1,9}, {1,1}, 25] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    a(n)=([0,1; 9,1]^n*[1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,1,-9) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = (((1+sqrt(37))/2)^(n+1) - ((1-sqrt(37))/2)^(n+1))/sqrt(37).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*9^k. - Paul Barry, Jul 20 2004
a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*3^(n-k)/2. - Paul Barry, Aug 28 2005
a(n) = Sum_{k=0..n} A109466(n,k)*(-9)^(n-k). - Philippe Deléham, Oct 26 2008
a(n) = (-703*(1/2-sqrt(37)/2)^n + 199*sqrt(37)*(1/2-sqrt(37)/2)^n-333*(1/2+sqrt(37)/2)^n + 171*sqrt(37)*(1/2+sqrt(37)/2)^n)/(74*(5*sqrt(37)-14)). - Alexander R. Povolotsky, Oct 13 2010
a(n) = Sum_{k=1..n+1, k odd} C(n+1,k)*37^((k-1)/2)/2^n. - Vladimir Shevelev, Feb 05 2014
G.f.: 1/(1-x-9*x^2). - Philippe Deléham, Feb 19 2020
a(n) = J(n, 9/2), where J(n,x) are the Jacobsthal polynomials. - G. C. Greubel, Feb 18 2020
E.g.f.: exp(x/2)*(sqrt(37)*cosh(sqrt(37)*x/2) + sinh(sqrt(37)*x/2))/sqrt(37). - Stefano Spezia, Feb 19 2020

Extensions

Edited by N. J. A. Sloane, Oct 11 2010

A083858 Expansion of x/(1 - 3*x - 6*x^2).

Original entry on oeis.org

0, 1, 3, 15, 63, 279, 1215, 5319, 23247, 101655, 444447, 1943271, 8496495, 37149111, 162426303, 710173575, 3105078543, 13576277079, 59359302495, 259535569959, 1134762524847, 4961500994295, 21693078131967, 94848240361671, 414703189876815, 1813199011800471
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Binomial transform of A015443. A row of array A083857.
Pisano period lengths: 1, 1, 1, 1, 12, 1, 8, 1, 1, 12, 110, 1, 168, 8, 12, 2, 16, 1, 360, 12, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 3*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
  • Mathematica
    a[n_]:=(MatrixPower[{{1,2},{1,-4}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
    LinearRecurrence[{3,6}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-3*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • Sage
    [lucas_number1(n,3,-6) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
    

Formula

a(n) = 3*a(n-1) + 6*a(n-2), a(0)=0, a(1)=1.
a(n) = (3*sqrt(33)/2 + 21/2)^(n/2)/sqrt(33) - (21/2 - 3*sqrt(33)/2)^(n/2)*(-1)^n/sqrt(33).
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(6*k+3 + 6*x )/( x*(6*k+6 + 6*x ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 21 2013
a(n) = B(n, k + 2^(n-1)) - B(n,k) where B(n,k) is formed by the family of recursions b(n) = 3*(b(n-1) + b(n-2))/2, with b(0) = 1 and b(1) = k, as explained further in A249861. - Richard R. Forberg, Nov 04 2014
a(n) = Sum_{k=0..n-1} 3^k * 2^(n-1-k) * binomial(k,n-1-k). - Seiichi Manyama, Aug 31 2025

A015446 Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2).

Original entry on oeis.org

1, 1, 11, 21, 131, 341, 1651, 5061, 21571, 72181, 287891, 1009701, 3888611, 13985621, 52871731, 192727941, 721445251, 2648724661, 9863177171, 36350423781, 134982195491, 498486433301, 1848308388211, 6833172721221, 25316256603331, 93647983815541, 346810549848851
Offset: 0

Views

Author

Keywords

Comments

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 11*a(n-2) equals the number of 11-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
For a(n) = ((1+(4*m+1)^(1/2))^n - (1-(4*m+1)^(1/2))^n)/(2^n*(4*m+1)^(1/2)), a(n)/a(n-1) appears to converge to (1+sqrt(4*m+1))/2. Here with m = 10, the numbers in the sequence are congruent with those of the Fibonacci sequence modulo m-1 = 9. For example, F(8) = 21 (Fibonacci) corresponds to a(8) = 5061 (here) because 2+1 and 5+0+1+6 are congruent. - Maleval Francis, Nov 12 2013

Crossrefs

Programs

Formula

a(n) = (((1+sqrt(41))/2)^(n+1) - ((1-sqrt(41))/2)^(n+1))/sqrt(41).
From Paul Barry, Sep 10 2005: (Start)
a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(1+(-1)^(n-k))*10^((n-k)/2)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*10^k. (End)
a(n) is the entry (M^n)1,1 where the matrix M = [1,2;5,0]. - _Simone Severini, Jun 22 2006
a(n) = Sum_{k=0..n} A109466(n,k)*(-10)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1-x-10*x^2). - Colin Barker, Feb 03 2012
a(n) = (Sum_{k=1..n+1, k odd} C(n+1,k)*41^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014

A057089 Scaled Chebyshev U-polynomials evaluated at i*sqrt(6)/2. Generalized Fibonacci sequence.

Original entry on oeis.org

1, 6, 42, 288, 1980, 13608, 93528, 642816, 4418064, 30365280, 208700064, 1434392064, 9858552768, 67757668992, 465697330560, 3200729997312, 21998563967232, 151195763787264, 1039165966526976, 7142170381885440
Offset: 0

Views

Author

Wolfdieter Lang, Aug 11 2000

Keywords

Comments

a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^6, 1->(1^6)0, starting from 0. The number of 1's and 0's of this word is 6*a(n-1) and 6*a(n-2), resp.

Crossrefs

Programs

Formula

a(n) = 6*a(n-1) + 6*a(n-2); a(0)=1, a(1)=6.
a(n) = S(n, i*sqrt(6))*(-i*sqrt(6))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-6*x-6*x^2).
a(n) = Sum_{k=0..n} 5^k*A063967(n,k). - Philippe Deléham, Nov 03 2006

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A015537 Expansion of x/(1 - 5*x - 4*x^2).

Original entry on oeis.org

0, 1, 5, 29, 165, 941, 5365, 30589, 174405, 994381, 5669525, 32325149, 184303845, 1050819821, 5991314485, 34159851709, 194764516485, 1110461989261, 6331368012245, 36098688018269, 205818912140325, 1173489312774701, 6690722212434805
Offset: 0

Views

Author

Keywords

Comments

First differences give A122690(n) = {1, 4, 24, 136, 776, 4424, 25224, ...}. Partial sums of a(n) are {0, 1, 6, 35, 200, ...} = (A123270(n) - 1)/8. - Alexander Adamchuk, Nov 03 2006
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 5's along the main diagonal, and 2's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 19 2011
Pisano period lengths: 1, 1, 8, 1, 4, 8, 48, 1, 24, 4, 40, 8, 42, 48, 8, 2, 72, 24, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=5*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Dec 26 2019
  • Magma
    [n le 2 select n-1 else 5*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 12 2012
    
  • Maple
    seq( simplify((2/I)^(n-1)*ChebyshevU(n-1, 5*I/4)), n=0..20); # G. C. Greubel, Dec 26 2019
  • Mathematica
    LinearRecurrence[{5,4}, {0,1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
    Table[2^(n-1)*Fibonacci[n, 5/2], {n, 0, 30}] (* G. C. Greubel, Dec 26 2019 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/(1-5*x-4*x^2))) \\ G. C. Greubel, Jan 01 2018
    
  • Sage
    [lucas_number1(n,5,-4) for n in range(0, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 5*a(n-1) + 4*a(n-2).
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*4^k*5^(n-2*k-1). - Paul Barry, Apr 23 2005
a(n) = Sum_{k=0..(n-1)} A122690(k). - Alexander Adamchuk, Nov 03 2006
a(n) = 2^(n-1)*Fibonacci(n, 5/2) = (2/i)^(n-1)*ChebyshevU(n-1, 5*i/4). - G. C. Greubel, Dec 26 2019
Showing 1-10 of 30 results. Next