cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100324 Square array, read by antidiagonals, where rows are successive self-convolutions of the top row, which equals A003169 shifted one place right.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 14, 1, 4, 12, 34, 79, 1, 5, 18, 61, 195, 494, 1, 6, 25, 96, 357, 1230, 3294, 1, 7, 33, 140, 575, 2277, 8246, 22952, 1, 8, 42, 194, 860, 3716, 15372, 57668, 165127, 1, 9, 52, 259, 1224, 5641, 25298, 108018, 415995, 1217270
Offset: 0

Views

Author

Paul D. Hanna, Nov 16 2004

Keywords

Comments

Column k forms the binomial transform of row k in triangle A100326 for k>=0.

Examples

			Array, A(n,k), begins as:
  1, 1,  3,  14,   79,   494,  3294, ...;
  1, 2,  7,  34,  195,  1230,  8246, ...;
  1, 3, 12,  61,  357,  2277, 15372, ...;
  1, 4, 18,  96,  575,  3716, 25298, ...;
  1, 5, 25, 140,  860,  5641, 38775, ...;
  1, 6, 33, 194, 1224,  8160, 56695, ...;
  1, 7, 42, 259, 1680, 11396, 80108, ...;
Antidiagonal triangle, T(n,k), begins as:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  7,  14;
  1, 4, 12,  34,  79;
  1, 5, 18,  61, 195,  494;
  1, 6, 25,  96, 357, 1230, 3294;
  1, 7, 33, 140, 575, 2277, 8246, 22952;
		

Crossrefs

Programs

  • Mathematica
    f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2-708*n+360)*f[n-1] - (371*n^2-1831*n+2250)*f[n-2] +(20*n^2-130*n+210)*f[n-3])/(16*n*(2*n -1)) ]]; (* f = A003169 *)
    A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[A[0,k-j]*A[n-1,j], {j,0,k}]]]; (* A = A100324 *)
    T[n_, k_]:= A[n-k, k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2023 *)
  • PARI
    {A(n,k)=if(k==0,1,if(n>0,sum(i=0,k,A(0,k-i)*A(n-1,i)), if(k==1,1,if(k==2,3,( (324*k^2-708*k+360)*A(0,k-1)-(371*k^2-1831*k+2250)*A(0,k-2)+(20*k^2-130*k+210)*A(0,k-3))/(16*k*(2*k-1)) )));)}
    
  • SageMath
    def f(n): # f = A003169
        if (n<2): return 1
        elif (n==2): return 3
        else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1))
    @CachedFunction
    def A(n, k): # A = 100324
        if (n==0): return f(k)
        elif (k==0): return 1
        else: return sum( A(0,k-j)*A(n-1, j) for j in range(k+1) )
    def T(n,k): return A(n-k,k)
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2023

Formula

A(n, k) = Sum_{i=0..k} A(0, k-i)*A(n-1, i) for n>0.
A(0, k) = A003169(k+1) = ( (324*k^2-708*k+360)*A(0, k-1) - (371*k^2-1831*k+2250)*A(0, k-2) +(20*k^2-130*k+210)*A(0, k-3) )/(16*k*(2*k-1)) for k>2, with A(0, 0) = A(0, 1)=1, A(0, 2)=3.
A(n, n) = (n+1)*A032349(n+1).
T(n, k) = A(n-k, k) (Antidiagonal triangle).
T(n, n) = A003169(n+1).
Sum_{k=0..n} T(n, k) = A100325(n) (Antidiagonal row sums).