A100324 Square array, read by antidiagonals, where rows are successive self-convolutions of the top row, which equals A003169 shifted one place right.
1, 1, 1, 1, 2, 3, 1, 3, 7, 14, 1, 4, 12, 34, 79, 1, 5, 18, 61, 195, 494, 1, 6, 25, 96, 357, 1230, 3294, 1, 7, 33, 140, 575, 2277, 8246, 22952, 1, 8, 42, 194, 860, 3716, 15372, 57668, 165127, 1, 9, 52, 259, 1224, 5641, 25298, 108018, 415995, 1217270
Offset: 0
Examples
Array, A(n,k), begins as: 1, 1, 3, 14, 79, 494, 3294, ...; 1, 2, 7, 34, 195, 1230, 8246, ...; 1, 3, 12, 61, 357, 2277, 15372, ...; 1, 4, 18, 96, 575, 3716, 25298, ...; 1, 5, 25, 140, 860, 5641, 38775, ...; 1, 6, 33, 194, 1224, 8160, 56695, ...; 1, 7, 42, 259, 1680, 11396, 80108, ...; Antidiagonal triangle, T(n,k), begins as: 1; 1, 1; 1, 2, 3; 1, 3, 7, 14; 1, 4, 12, 34, 79; 1, 5, 18, 61, 195, 494; 1, 6, 25, 96, 357, 1230, 3294; 1, 7, 33, 140, 575, 2277, 8246, 22952;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Programs
-
Mathematica
f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2-708*n+360)*f[n-1] - (371*n^2-1831*n+2250)*f[n-2] +(20*n^2-130*n+210)*f[n-3])/(16*n*(2*n -1)) ]]; (* f = A003169 *) A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[A[0,k-j]*A[n-1,j], {j,0,k}]]]; (* A = A100324 *) T[n_, k_]:= A[n-k, k]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2023 *)
-
PARI
{A(n,k)=if(k==0,1,if(n>0,sum(i=0,k,A(0,k-i)*A(n-1,i)), if(k==1,1,if(k==2,3,( (324*k^2-708*k+360)*A(0,k-1)-(371*k^2-1831*k+2250)*A(0,k-2)+(20*k^2-130*k+210)*A(0,k-3))/(16*k*(2*k-1)) )));)}
-
SageMath
def f(n): # f = A003169 if (n<2): return 1 elif (n==2): return 3 else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1)) @CachedFunction def A(n, k): # A = 100324 if (n==0): return f(k) elif (k==0): return 1 else: return sum( A(0,k-j)*A(n-1, j) for j in range(k+1) ) def T(n,k): return A(n-k,k) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2023
Formula
A(n, k) = Sum_{i=0..k} A(0, k-i)*A(n-1, i) for n>0.
A(0, k) = A003169(k+1) = ( (324*k^2-708*k+360)*A(0, k-1) - (371*k^2-1831*k+2250)*A(0, k-2) +(20*k^2-130*k+210)*A(0, k-3) )/(16*k*(2*k-1)) for k>2, with A(0, 0) = A(0, 1)=1, A(0, 2)=3.
A(n, n) = (n+1)*A032349(n+1).
T(n, k) = A(n-k, k) (Antidiagonal triangle).
T(n, n) = A003169(n+1).
Sum_{k=0..n} T(n, k) = A100325(n) (Antidiagonal row sums).
Comments