cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100327 Row sums of triangle A100326, in which row n equals the inverse binomial of column n of square array A100324.

Original entry on oeis.org

1, 2, 8, 42, 252, 1636, 11188, 79386, 579020, 4314300, 32697920, 251284292, 1953579240, 15336931928, 121416356108, 968187827834, 7769449728780, 62696580696172, 508451657412496, 4141712433518956, 33872033298518728, 278014853384816184, 2289376313410678312
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2004

Keywords

Comments

Self-convolution yields A100328, which equals column 1 of triangle A100326 (omitting leading zero).

Crossrefs

Programs

  • Magma
    A100327:= func< n | n eq 0 select 1 else (2/n)*(&+[Binomial(n, k)*Binomial(2*n+k, k-1): k in [1..n]]) >;
    [A100327(n): n in [0..30]]; // G. C. Greubel, Jan 30 2023
    
  • Maple
    A100327 := n -> simplify(2^n*binomial(3*n,2*n)*hypergeom([-1-2*n,-n], [-3*n], 1/2)/ (n+1/2)): seq(A100327(n), n=0..22); # Peter Luschny, Jun 10 2017
  • Mathematica
    Flatten[{1,Table[Sum[2*Binomial[n,k]*Binomial[2n+k,k-1]/n,{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n,2*binomial(n,k)*binomial(2*n+k,k-1)/n))
    
  • PARI
    a(n)=polcoeff((1/x)*serreverse(x*(1-x+sqrt(1-4*x +x^2*O(x^n)))/(2+x)),n)
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Nov 22 2012
    
  • SageMath
    def A100327(n): return 2^n*binomial(3*n,2*n)*simplify(hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2))
    [A100327(n) for n in range(31)] # G. C. Greubel, Jan 30 2023

Formula

G.f.: (1/x)*Series_Reversion( x*(1-x + sqrt(1 - 4*x)) / (2+x) ). - Paul D. Hanna, Nov 22 2012
G.f. A(x) = (1+G(x))/(1-G(x)), also A(x)^2 = (1+G(x))*G(x)/x, where G(x) = x*(1+G(x))/(1-G(x))^2 is the g.f. of A003169.
a(n) = 2*A003168(n) for n>0 with a(0)=1.
a(n) = Sum_{k=1..n} 2*binomial(n, k)*binomial(2n+k, k-1)/n for n>0 with a(0)=1.
Recurrence: 20*n*(2*n+1)*a(n) = (371*n^2 - 395*n + 96)*a(n-1) - 6*(27*n^2 - 103*n + 96)*a(n-2) + 4*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(4046 + 1122*sqrt(17))*((71 + 17*sqrt(17))/16)^n/(136*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = 2^n*binomial(3*n,2*n)*hypergeometric([-1-2*n,-n], [-3*n],1/2)/(n+1/2). - Peter Luschny, Jun 10 2017