cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100334 An inverse Catalan transform of Fibonacci(2n).

Original entry on oeis.org

0, 1, 2, 2, 0, -5, -13, -21, -21, 0, 55, 144, 233, 233, 0, -610, -1597, -2584, -2584, 0, 6765, 17711, 28657, 28657, 0, -75025, -196418, -317811, -317811, 0, 832040, 2178309, 3524578, 3524578, 0, -9227465, -24157817, -39088169, -39088169, 0, 102334155, 267914296, 433494437, 433494437, 0, -1134903170
Offset: 0

Views

Author

Paul Barry, Nov 17 2004

Keywords

Crossrefs

Cf. A102312 (F(5n)), A134489 (F(5n+2)), A134490 (F(5n+3)).

Programs

  • Magma
    I:=[0,1,2,2]; [n le 4 select I[n] else 3*Self(n-1) -4*Self(n-2) +2*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Jan 30 2023
    
  • Mathematica
    Table[FullSimplify[GoldenRatio^n*Sqrt[2/5 + 2*Sqrt[5]/25]*Sin[Pi*n/5 + Pi/5] - (1/GoldenRatio)^n*Sqrt[2/5 - 2*Sqrt[5]/25]*Sin[2*Pi*n/5 + 2*Pi/5]], {n, 0, 41}] (* Arkadiusz Wesolowski, Oct 26 2012 *)
    LinearRecurrence[{3,-4,2,-1}, {0,1,2,2}, 41] (* G. C. Greubel, Jan 30 2023 *)
  • SageMath
    def A100334(n): return sum((-1)^k*binomial(n-k,k)*fibonacci(2*n-2*k) for k in range(1+(n//2)))
    [A100334(n) for n in range(41)] # G. C. Greubel, Jan 30 2023

Formula

G.f.: x*(1-x)/(1-3*x+4*x^2-2*x^3+x^4).
a(n) = (phi)^n*sqrt(2/5+2*sqrt(5)/25)*sin(Pi*(n+1)/5) -(1/phi)^n*sqrt(2/5-2*sqrt(5)/25)*sin(2*Pi*(n+1)/5), where phi=(1+sqrt(5))/2;
a(n) = Sum_{k=0..floor(n/2)} (C(n-k, k)*(-1)^k*Sum_{j=0..n-k} C(n-k, j)*F(j));
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*Fibonacci(2n-2k).
a(n) = 3*a(n-1)-4*a(n-2)+2*a(n-3)-a(n-4). - Paul Curtz, May 13 2008
a(n) = Sum_{k=0..n} A109466(n,k)*A001906(k). - Philippe Deléham, Oct 30 2008
a(5*n) = -F(-5*n), a(5*n+1) = -F(-5*n-2), a(5*n+2) = a(5*n+3) = F(-5*n-3), a(5*n+4) = 0. - Ehren Metcalfe, Apr 04 2019