A100366
a(n) is the least prime number q such that q,q+1,q+2,q+3,...,q+n-1 have 2,4,8,...,2^n divisors respectively.
Original entry on oeis.org
2, 5, 193, 613, 1124581, 52071301, 213536830501
Offset: 1
a(4)=613: q=613 (a prime, hence two divisors), q+1 = 614 = 2*307 (4 divisors), q+2 = 615 = 3*5*41 (8 divisors), and q+3 = 616 = 2^3 * 7 * 11 (16 divisors).
Keywords fini and full added and Example section edited by
Jon E. Schoenfield, Nov 12 2017
A340229
Numbers m such that numbers m, m + 1, m + 2, m + 3 and m + 4 have k, 2k, 4k, 8k and 16k divisors respectively.
Original entry on oeis.org
1124581, 2101621, 2135701, 3829381, 5801701, 6097381, 6453541, 6535861, 6609781, 6799621, 6972661, 7055317, 7527061, 8281381, 8485502, 8524981, 8883326, 9412981, 9895141, 11455141, 11901781, 12043621, 12929941, 13749061, 14747701, 15150901, 15504661, 15533941
Offset: 1
tau(1124581) = 2, tau(1124582) = 4, tau(1124583) = 8, tau(1124584) = 16, tau (1124585) = 32.
-
[m: m in [1..10^7] | #Divisors(m) eq #Divisors(m + 1) / 2 and #Divisors(m) eq #Divisors(m + 2) / 4 and #Divisors(m) eq #Divisors(m + 3) / 8 and #Divisors(m) eq #Divisors(m + 4) / 16]
-
isok(m) = vector(4, k, numdiv(m+k))/numdiv(m) == [2,4,8,16]; \\ Michel Marcus, Jan 02 2021
A340230
a(n) is the smallest number m such that numbers m, m + 1, m + 2, ..., m + n - 1 have k, 2*k, 4*k, 8*k, ..., (2^(n-1))*k divisors respectively.
Original entry on oeis.org
1, 1, 193, 613, 1124581, 52071301, 213536830501
Offset: 1
a(4) = 613 because 613 is the smallest term of 4 consecutive numbers with this property: tau(613) = 2, tau(614) = 4, tau(615) = 8, tau(616) = 16.
Cf.
A100366 (similar sequence for primes).
-
isok(m, n) = my(nb=numdiv(m)); for (k=1, n-1, if (numdiv(m+k)/nb != 2^k, return(0))); return (1);
a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jan 05 2021
Showing 1-3 of 3 results.
Comments