A100380 a(n) = least k such that prime(n) + A002110(k) is prime.
0, 1, 1, 2, 1, 2, 1, 4, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 2, 1, 2, 3, 2, 5, 2, 1, 2, 1, 3, 5, 3, 2, 1, 4, 1, 2, 2, 3, 2, 2, 1, 3, 1, 2, 1, 3, 3, 2, 1, 4, 2, 1, 3, 2, 2, 2, 1, 2, 2, 1, 3, 4, 2, 1, 4, 3, 2, 3, 1, 3, 2, 3, 2, 2, 3, 2, 3, 4, 3, 3, 1, 4, 1, 2, 5, 2, 3, 2, 1, 4, 4, 3, 5, 3, 4, 2, 4, 1, 4, 2
Offset: 1
Examples
prime(8)=19; 19 + 2 = 21 = 3*7, 19 + 6 = 25 = 5*5, and 19 + 30 = 49 = 7*7, but 19 + 210 = 229, which is prime; 210=prime(4)#, so a(8)=4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (corrected by Ray Chandler, Jan 19 2019)
Programs
-
Maple
primorial:= proc(n) option remember: ithprime(n)*procname(n-1) end proc: primorial(0):= 1: f:= proc(n) local k, p; p:= ithprime(n); for k from 0 do if isprime(p+primorial(k)) then return k fi od: end proc: map(f, [$1..100]);# Robert Israel, Aug 27 2015
-
Mathematica
Table[k := 0;While[Not[PrimeQ[Prime[n]+Product[Prime[i],{i,1,k}]]],k++ ];k,{n,1, 100}] (* Stefan Steinerberger, Apr 10 2006 *)
-
PARI
primo(n) = prod(i=1, n, prime(i)); a(n) = {k=0; while(!isprime(prime(n)+primo(k)), k++); k;} \\ Michel Marcus, Aug 27 2015
-
Python
from itertools import count, islice from sympy import isprime, prime, primorial def A002110(n): return primorial(n) if n > 0 else 1 def A100380(n): pn = prime(n) return next(k for k in count(0) if isprime(pn+A002110(k))) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jan 10 2025
Extensions
More terms from Stefan Steinerberger, Apr 10 2006
a(1) = 0 added and name edited by Altug Alkan, Dec 02 2015
Comments