A100413 Numbers k such that k is reversal(k)-th even composite number (k is A004086(k)-th even composite number).
52, 592, 5992, 59992, 599992, 5999992, 59999992, 599999992, 5999999992, 59999999992, 599999999992, 5999999999992, 59999999999992, 599999999999992, 5999999999999992, 59999999999999992, 599999999999999992
Offset: 1
Examples
592 is in the sequence because 592 is the 295th even composite number.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Magma
[6*10^n -8: n in [1..20]]; // G. C. Greubel, Apr 13 2023
-
Maple
A100413:=n->6*10^n-8; seq(A100413(n), n=1..20); # Wesley Ivan Hurt, Apr 06 2014
-
Mathematica
Table[6*10^n-8, {n,20}]
-
Maxima
A100413(n):=6*10^n-8$ makelist(A100413(n),n,1,17); /* Martin Ettl, Nov 08 2012 */
-
PARI
Vec(4*x*(5*x+13)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Oct 14 2014
-
SageMath
[6*10^n -8 for n in range(1,21)] # G. C. Greubel, Apr 13 2023
Formula
a(n) = 6*10^n - 8.
a(n) = 2*(A086943(n) + 3). - Martin Ettl, Nov 08 2012
From Colin Barker, Oct 14 2014: (Start)
a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3).
G.f.: 4*x*(13+5*x)/((1-x)*(1-10*x)). (End)
E.g.f.: 2 (1 - 4*exp(x) + 3*exp(10*x)). - G. C. Greubel, Apr 13 2023