cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100441 a(n) is the denominator of f(n) where f(1) = 2 and f(n+1) is the solution of x + Sum_{i=1..n} f(i) = x * Product_{i=1..n} f(i).

Original entry on oeis.org

1, 1, 3, 13, 217, 57073, 3811958497, 16605534578235736513, 309708098978072051970763989442580255617, 106322990835084829467725909226560893968664147958670035553130958199430801942273
Offset: 1

Views

Author

Gilbert Boily (sgbl(AT)escape.ca), Nov 21 2004, Sep 03 2007

Keywords

Comments

Let E(0) = x + 1, let E(n+1) = 1 - E(n) + E(n)^2. Let e(n) = discrim(E(n),x) and let f(n) = e(n+1)/e(n)^2. Then f(1,2,3,...) = -3,13,217,57073,381195849,... which looks like this sequence (I do not have a proof yet). - Daniel R. L. Brown (dbrown(AT)certicom.com), Nov 18 2005
This sequence gives the next number in a sequence where the sum and the product of the terms of the sequence are equal.
It happens that the sum or product of the terms of this sequence match A001146 for the numerator of the sum or product and A076628 for the denominator of the sum or product of the sequence.
Let g(x) = x^2 - x + 1 be the map producing Sylvester's sequence A000058. Then for n >= 0, g^n(1/2) = 1/f(n+2), where g^n is the n-th iterate of g, so a(n+2) is the numerator of g^n(1/2). - Curtis Bechtel, Apr 05 2024

Examples

			2, 2, 4/3, 16/13, 256/217, 65536/57073, 4294967296/3811958497, 18446744073709551616/16605534578235736513, ... = A001146/A100441 (essentially).
		

Crossrefs

Programs

  • Magma
    I:=[1,3]; [1] cat  [n le 2 select I[n] else 2^(2^(n-1))-2^(2^(n-2))*Self(n-1)+Self(n-1)^2: n in [1..10]]; // Vincenzo Librandi, Jun 13 2015
    
  • Maple
    f:=proc(n) option remember; local i,k,k1,k2; if n = 1 then return(2); fi; k:=mul(f(i),i=1..n-1); k1:=numer(k); k2:=denom(k); k1/(k1-k2); end;
    f:=n-> if n=1 or n=2 then 2 else f(n-1)^2/(f(n-1)^2-f(n-1)+1) fi; # Robert FERREOL, Jun 12 2015
  • Mathematica
    f[n_] := f[n] = (frac = Product[f[i], {i, 1, n-1}]; p = Numerator[frac]; q = Denominator[frac]; p/(p-q)); f[1] = 2; (* or, after Robert FERREOL *) f[n_] := f[n] = If[n == 1 || n == 2, 2, f[n-1]^2/(f[n-1]^2-f[n-1]+1)]; Table[f[n], {n, 1, 10}] // Denominator (* Jean-François Alcover, Sep 19 2012, updated Jun 15 2015 *)
  • PARI
    {a(n) = my(s, t); if( n<3, n>0, t = a(n-1); s = 2^(2^(n-3)); s*s -s*t +t*t)}; /* Michael Somos, Aug 05 2017 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A100441
        if (n<3): return 2*n-1
        else: return 2^(2^(n-1)) - 2^(2^(n-2))*a(n-1) + a(n-1)^2
    [1]+[a(n) for n in range(1,12)] # G. C. Greubel, Apr 08 2023

Formula

Let F(n) = Product_{i=1..n} f(i) = p/q (say). Then f(n+1) = p/(p-q).
From Robert FERREOL, Jun 12 2015: (Start)
Recurrence: f(1) = f(2) = 2; f(n+1) = f(n)^2/(f(n)^2 - f(n) + 1).
Since f(n) = 2^(2^(n-2))/a(n) for n >= 2, the recurrence for a(n) is:
a(1) = a(2) = 1; a(n+1) = 2^(2^(n-1)) - 2^(2^(n-2))*a(n) + a(n)^2.
(End)

Extensions

Name edited by Michael Somos, Aug 05 2017