A100441 a(n) is the denominator of f(n) where f(1) = 2 and f(n+1) is the solution of x + Sum_{i=1..n} f(i) = x * Product_{i=1..n} f(i).
1, 1, 3, 13, 217, 57073, 3811958497, 16605534578235736513, 309708098978072051970763989442580255617, 106322990835084829467725909226560893968664147958670035553130958199430801942273
Offset: 1
Examples
2, 2, 4/3, 16/13, 256/217, 65536/57073, 4294967296/3811958497, 18446744073709551616/16605534578235736513, ... = A001146/A100441 (essentially).
Links
- N. MacKinnon and N. Lord, Sums equal to products, The Mathematical Gazette, March 1986, 21-22.
- Crux Mathematicorum, Mathematical mayhem pb no. 114, Vol 30, 2004, p. 467-468. [_Robert FERREOL_, Jul 06 2015]
Programs
-
Magma
I:=[1,3]; [1] cat [n le 2 select I[n] else 2^(2^(n-1))-2^(2^(n-2))*Self(n-1)+Self(n-1)^2: n in [1..10]]; // Vincenzo Librandi, Jun 13 2015
-
Maple
f:=proc(n) option remember; local i,k,k1,k2; if n = 1 then return(2); fi; k:=mul(f(i),i=1..n-1); k1:=numer(k); k2:=denom(k); k1/(k1-k2); end; f:=n-> if n=1 or n=2 then 2 else f(n-1)^2/(f(n-1)^2-f(n-1)+1) fi; # Robert FERREOL, Jun 12 2015
-
Mathematica
f[n_] := f[n] = (frac = Product[f[i], {i, 1, n-1}]; p = Numerator[frac]; q = Denominator[frac]; p/(p-q)); f[1] = 2; (* or, after Robert FERREOL *) f[n_] := f[n] = If[n == 1 || n == 2, 2, f[n-1]^2/(f[n-1]^2-f[n-1]+1)]; Table[f[n], {n, 1, 10}] // Denominator (* Jean-François Alcover, Sep 19 2012, updated Jun 15 2015 *)
-
PARI
{a(n) = my(s, t); if( n<3, n>0, t = a(n-1); s = 2^(2^(n-3)); s*s -s*t +t*t)}; /* Michael Somos, Aug 05 2017 */
-
SageMath
@CachedFunction def a(n): # a = A100441 if (n<3): return 2*n-1 else: return 2^(2^(n-1)) - 2^(2^(n-2))*a(n-1) + a(n-1)^2 [1]+[a(n) for n in range(1,12)] # G. C. Greubel, Apr 08 2023
Formula
Let F(n) = Product_{i=1..n} f(i) = p/q (say). Then f(n+1) = p/(p-q).
From Robert FERREOL, Jun 12 2015: (Start)
Recurrence: f(1) = f(2) = 2; f(n+1) = f(n)^2/(f(n)^2 - f(n) + 1).
Since f(n) = 2^(2^(n-2))/a(n) for n >= 2, the recurrence for a(n) is:
a(1) = a(2) = 1; a(n+1) = 2^(2^(n-1)) - 2^(2^(n-2))*a(n) + a(n)^2.
(End)
Extensions
Name edited by Michael Somos, Aug 05 2017
Comments