A100451 a(n) = 0 for n <= 2; for n >= 3, a(n) = (n-2)*floor((n^2-2)/(n-2)).
0, 0, 7, 14, 21, 32, 45, 60, 77, 96, 117, 140, 165, 192, 221, 252, 285, 320, 357, 396, 437, 480, 525, 572, 621, 672, 725, 780, 837, 896, 957, 1020, 1085, 1152, 1221, 1292, 1365, 1440, 1517, 1596, 1677, 1760, 1845, 1932, 2021, 2112, 2205, 2300, 2397, 2496, 2597, 2700
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[0, 0] cat [(n-2)*Floor((n^2-2)/(n-2)): n in [3..30]]; // Vincenzo Librandi, Oct 04 2011
-
Mathematica
Join[{0,0,7,14},Table[(n-2)(n+2),{n,5,60}]] (* or *) Join[{0,0,7,14}, LinearRecurrence[{3,-3,1},{21,32,45},60]] (* Harvey P. Dale, Oct 03 2011 *)
-
PARI
a(n)=if(n<3,0,(n^2-2)\(n-2)*(n-2)) \\ Charles R Greathouse IV, Oct 16 2015
-
SageMath
def A100451(n): return 7 * (n - 2) * ((n - 1) // 2) if n < 5 else (n - 2) * (n + 2) print([A100451(n) for n in range(1, 61)]) # G. C. Greubel, Apr 07 2023
Formula
a(n) = (n-2)*(n+2), n >= 5. - R. J. Mathar, Aug 17 2009
a(n) = A028347(n), n >= 5. - R. J. Mathar, Jul 31 2010
Extensions
Factor in definition corrected by R. J. Mathar, Aug 17 2009