A100503 Bisection of A000125.
1, 4, 15, 42, 93, 176, 299, 470, 697, 988, 1351, 1794, 2325, 2952, 3683, 4526, 5489, 6580, 7807, 9178, 10701, 12384, 14235, 16262, 18473, 20876, 23479, 26290, 29317, 32568, 36051, 39774, 43745, 47972, 52463, 57226, 62269, 67600, 73227, 79158
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A000125.
Programs
-
Magma
[(4*n^3+5*n+3)/3: n in [0..40]]; // G. C. Greubel, Apr 03 2023
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,4,15,42},40] (* Harvey P. Dale, Apr 12 2013 *)
-
SageMath
[1+n*(4*n^2+5)/3 for n in range(41)] # G. C. Greubel, Apr 03 2023
Formula
a(n) = (4*n^3 + 5*n + 3)/3. - Ralf Stephan, May 15 2007
From Colin Barker, Aug 20 2012: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (1+5*x^2+2*x^3)/(1-x)^4. (End)
E.g.f.: (3 + 9*x + 12*x^2 + 4*x^3)*exp(x). - G. C. Greubel, Apr 03 2023
Extensions
More terms from Hugo Pfoertner, Nov 25 2004