A046825
Numerator of Sum_{k=0..n} 1/binomial(n,k).
Original entry on oeis.org
1, 2, 5, 8, 8, 13, 151, 256, 83, 146, 1433, 2588, 15341, 28211, 52235, 19456, 19345, 36362, 651745, 6168632, 1463914, 2786599, 122289917, 233836352, 140001721, 268709146, 774885169, 1491969394, 41711914513, 80530073893
Offset: 0
1, 2, 5/2, 8/3, 8/3, 13/5, 151/60, 256/105, 83/35, 146/63, 1433/630, 2588/1155, 15341/6930, 28211/12870, 52235/24024, 19456/9009, 19345/9009, ... = A046825/A046826
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294, Problem 7.15.
- R. L. Graham, D. E. Knuth, O. Patashnik; Concrete Mathematics, Addison-Wesley, Reading (1994) 2nd Ed. Exercise 5.100.
- G. Letac, Problèmes de probabilités, Presses Universitaires de France (1970), p. 14.
- F. Nedemeyer and Y. Smorodinsky, Resistances in the multidimensional cube, Quantum 7:1 (1996) 12-15 and 63.
- T. D. Noe, Table of n, a(n) for n = 0..200
- T. Mansour, Gamma function, beta function and combinatorial identities.
- T. Sillke, More information
- D. Singmaster, Problem 79-16, Resistances in an n-Dimensional Cube, SIAM Review, 22 (1980) 504.
- B. Sury, Sum of the reciprocals of the binomial coefficients, Europ. J. Combinatorics, 14 (1993), 351-353.
-
[Numerator((&+[1/Binomial(n,j): j in [0..n]])): n in [0..40]]; // G. C. Greubel, May 24 2021
-
Numerator/@Table[Sum[1/Binomial[n,k],{k,0,n}],{n,0,40}] (* Harvey P. Dale, Apr 21 2011 *)
-
P=1;vector(30,n,numerator(P)+0*P=P/2/n*(n+1)+1) \\ M. F. Hasler, Jul 17 2012
-
A046825(n)=numerator(sum(k=0,n,1/binomial(n,k))) \\ M. F. Hasler, Jul 19 2012
-
[numerator(sum(1/binomial(n,j) for j in (0..n))) for n in (0..40)] # G. C. Greubel, May 24 2021
References entries (Comtet, Graham et al., Letac, Nedemeyer) and Links entries (Singmaster, Sury) from Torsten.Sillke(AT)uni-bielefeld.de
A100514
Numerator of Sum_{k=0..n} 1/C(3*n, 3*k).
Original entry on oeis.org
1, 2, 41, 85, 9287, 10034, 4089347, 3529889, 119042647, 191288533, 1553111566613, 471993968921, 48141284433673, 287285900609, 24342145990117741, 68262703949495173, 490305954062679017, 2207402771385797549, 995490830339080453219, 188798823808438240073
Offset: 0
Sum_{k=0..n} 1/C(3*n, 3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = a(n)/A100515(n).
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
-
[Numerator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
-
Table[Numerator[(3*n+1)*Sum[Beta[3k+1,3n-3k+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
-
def A100514(n): return numerator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
[A100514(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
A100515
Denominator of Sum_{k=0..n} 1/C(3*n, 3*k).
Original entry on oeis.org
1, 1, 20, 42, 4620, 5005, 2042040, 1763580, 59491432, 95611230, 776363187600, 235953517800, 24067258815600, 143627189706, 12170010541088400, 34128942604356600, 245138783756209200, 1103648327722933300, 497725329469811592240, 94396183175309095080, 538372898043179538939600
Offset: 0
Sum_{k=0..n} 1/binomial(3*n,3*k) = { 1, 2, 41/20, 85/42, 9287/4620, 10034/5005, 4089347/2042040, 3529889/1763580, 119042647/59491432, 191288533/95611230, 1553111566613/776363187600, ...} = A100514(n)/a(n).
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
-
[Denominator((&+[1/Binomial(3*n, 3*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
-
Table[Denominator[(3*n+1)*Sum[Beta[3k+1,3n-3k+1], {k,0,n}]], {n,0,40}] (* G. C. Greubel, Mar 28 2023 *)
-
def A100515(n): return denominator((3*n+1)*sum(beta(3*k+1, 3*n-3*k+1) for k in range(n+1)))
[A100515(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
A100512
Numerator of Sum_{k=0..n} 1/C(2*n, 2*k).
Original entry on oeis.org
1, 2, 13, 32, 73, 647, 28211, 6080, 18181, 1542158, 2786599, 29229544, 134354573, 745984697, 80530073893, 291816652544, 274050911261, 258328905974, 18079412000719, 8574689239808, 334365081328507, 13707288497202919, 52386756782140399, 589296748617180608
Offset: 0
Sum_{k=0..n} 1/binomial(2*n, 2*k) = {1, 2, 13/6, 32/15, 73/35, 647/315, 28211/13860, 6080/3003, 18181/9009, 1542158/765765, 2786599/1385670, 29229544/14549535, 134354573/66927861, ...} = a(n)/A100513(n).
- M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 126-127.
-
[Numerator((&+[1/Binomial(2*n, 2*k): k in [0..n]])): n in [0..40]]; // G. C. Greubel, Mar 28 2023
-
Table[Sum[1/Binomial[2n,2k],{k,0,n}],{n,0,30}]//Numerator (* Harvey P. Dale, Aug 12 2016 *)
-
def A100512(n): return numerator((2*n+1)*sum(beta(2*k+1, 2*n-2*k+1) for k in range(n+1)))
[A100512(n) for n in range(40)] # G. C. Greubel, Mar 28 2023
Showing 1-4 of 4 results.
Comments