A100523 a(n) = a(n-1)^2 + 2*a(n-1) - 1 with a(0) = 1.
1, 2, 7, 62, 3967, 15745022, 247905749270527, 61457260521381894004129398782, 3776994870793005510047522464634252677140721938309041881087
Offset: 0
Keywords
Links
Crossrefs
Cf. A004019.
Programs
-
Magma
[n le 1 select 1 else Self(n-1)^2 +2*Self(n-1) -1: n in [1..13]]; // G. C. Greubel, Jun 26 2022
-
Mathematica
RecurrenceTable[{a[n] == a[n-1]^2 + a[n-1]*2 - 1, a[0] == 1}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *) NestList[#^2+2#-1&,1,10] (* Harvey P. Dale, Aug 17 2025 *)
-
SageMath
def a(n): return 1 if (n==0) else a(n-1)^2 + 2*a(n-1) - 1 # a=A100523 [a(n) for n in (0..12)] # G. C. Greubel, Jun 26 2022
Formula
a(n) ~ c^(2^n), where c = 1.6784589651254290832096890907802189718037513767396728769965837700954845976... . - Vaclav Kotesovec, Dec 18 2014