cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100526 Number of local binary search trees (i.e., labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) with n vertices such that the root has only one child.

Original entry on oeis.org

1, 2, 6, 28, 180, 1476, 14728, 173216, 2346480, 35981200, 616111056, 11652662880, 241259095168, 5427319729664, 131818482923520, 3437894427590656, 95825936705566464, 2842834581982211328, 89435890422890433280, 2974081497762693670400, 104234511362034627442176
Offset: 1

Views

Author

Emeric Deutsch, Nov 24 2004

Keywords

Examples

			a(3)=6 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i).
E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! + 1476*x^6/6! +...
Given G(x) such that G( sqrt( G(x^2*exp(-x)) ) ) = x, where
G(x) = x + 1/2*x^2 + 1/8*x^3 + 1/12*x^4 + 77/384*x^5 + 23/120*x^6 + 2077/46080*x^7 + 179/5040*x^8 + 239525/2064384*x^9 +...+ A273952(n)*x^n/(2^(n-1)*(n-1)!) +...
then A(x) = G( sqrt( G(x^2*exp(x)) ) ). - _Paul D. Hanna_, Jun 06 2016
		

Crossrefs

Programs

  • Magma
    [2^(1-n)*(&+[ k^(n-1)*Binomial(n, k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Mar 27 2023
    
  • Maple
    seq((1/2^(n-1))*add(k^(n-1)*binomial(n,k),k=1..n),n=1..22);
  • Mathematica
    Rest[CoefficientList[Series[-2*LambertW[-x*E^(x/2)/2], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
  • PARI
    /* Egf A(x) = G(sqrt(G(x^2*exp(x)))) if G(sqrt(G(x^2*exp(-x)))) = x */
    {a(n) = my(G=x); for(i=1,n, G = serreverse( sqrt( subst(G,x, x^2*exp(-x +O(x^n))) ) )); A = subst(G,x,sqrt(subst(G,x,x^2*exp(x +O(x^n))))); n!*polcoeff(A,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Jun 06 2016
    
  • SageMath
    def A100526(n): return 2^(1-n)*sum( k^(n-1)*binomial(n, k) for k in range(1,n+1) )
    [A100526(n) for n in range(1,40)] # G. C. Greubel, Mar 27 2023

Formula

a(n) = (1/2^(n-1))*Sum_{k=1..n} k^(n-1)*binomial(n, k).
a(n) = n*A007889(n-1).
E.g.f.: -2*LambertW(-x*exp(x/2)/2). - Paul D. Hanna, Jun 07 2016, after Vladeta Jovovic's formula in A038049
E.g.f.: G( sqrt( G(x^2*exp(x)) ) ), where G( sqrt( G(x^2*exp(-x)) ) ) = x, and G(x) is the e.g.f. of A273952. - Paul D. Hanna, Jun 06 2016
a(n) ~ sqrt(1 + LambertW(exp(-1)))*n^(n-1) / (2^(n-1) * exp(n) * LambertW(exp(-1))^n). - Vaclav Kotesovec, Jun 23 2016