A101777
Triangle read by rows where n-th row is the lexicographically least set of n not-necessarily-distinct primes summing to A100555(n)-1.
Original entry on oeis.org
3, 3, 5, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 5, 7, 2, 2, 2, 2, 2, 2, 2, 3, 7, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 7
Offset: 1
Triangle begins:
{3}
{3,5}
{2,3,3}
{2,2,2,2}
{2,2,2,2,7}
{2,2,2,2,2,5}
{2,2,2,2,2,2,3}
{2,2,2,2,2,2,5,7}
{2,2,2,2,2,2,2,3,7}
{2,2,2,2,2,2,2,2,3,5}
{2,2,2,2,2,2,2,2,2,3,3}
{2,2,2,2,2,2,2,2,2,2,2,2}
{2,2,2,2,2,2,2,2,2,2,2,2,11}
{2,2,2,2,2,2,2,2,2,2,2,3,3,7}
{2,2,2,2,2,2,2,2,2,2,2,2,2,2,7}
A100498
Smallest square that is equal to the sum of n distinct primes plus 1.
Original entry on oeis.org
1, 4, 9, 16, 36, 49, 64, 81, 100, 121, 144, 169, 256, 289, 324, 361, 400, 441, 576, 625, 676, 729, 900, 961, 1024, 1089, 1296, 1369, 1444, 1521, 1764, 1849, 1936, 2025, 2304, 2401, 2500, 2601, 2916, 3025, 3136, 3481, 3600, 3721, 3844, 4225, 4356, 4489
Offset: 0
a(1)=4 because 2^2=1+3;
a(2)=9 because 3^2=1+3+5;
a(3)=16 because 4^2=1+3+5+7.
A101776
Smallest k such that k^2 is equal to the sum of n not-necessarily-distinct primes plus 1.
Original entry on oeis.org
1, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 0
-
iMax[k_,n_]:=PrimePi[k^2-2*n+1]
f[k_,n_]:=IntegerPartitions[k^2-1,{n},Table[Prime[i],{i,1,iMax[k,n]}]]
a[n_]:=Module[{k=1},While[f[k,n]=={},k++];k]
Table[a[n],{n,0,100}]
(* Luc Rousseau, Dec 30 2019 *)
-
a(n) = ceil(sqrt(2*n+1)); \\ Jinyuan Wang, Jan 28 2020
A101778
Last term in each row of triangle referenced in A101777.
Original entry on oeis.org
3, 5, 3, 2, 7, 5, 3, 7, 7, 5, 3, 2, 11, 7, 7, 5, 3, 13, 11, 7, 7, 5, 3, 2, 13, 13, 11, 7, 7, 5, 3, 17, 13, 13, 11, 7, 7, 5, 3, 2, 19, 17, 13, 13, 11, 7, 7, 5, 3, 19, 19, 17, 13, 13, 11, 7, 7, 5, 3, 2, 23, 19, 19, 17, 13, 13, 11, 7, 7, 5, 3, 23, 23, 19, 19, 17, 13, 13, 11, 7, 7, 5, 3, 2, 23
Offset: 1
-
A020482(k) = forprime(q=2, k, if(isprime(2*k-q), return(2*k-q)));
a(n) = {my(r=(ceil(sqrt(2*n+1)))^2-2*n+3); if(r%2==0, r=A020482(r/2), if(isprime(r-2), r-=2, r=A020482(r\2))); r; } \\ Jinyuan Wang, Jan 29 2020
Showing 1-4 of 4 results.
Comments