A100587 Number of nonempty subsets of divisors of n.
1, 3, 3, 7, 3, 15, 3, 15, 7, 15, 3, 63, 3, 15, 15, 31, 3, 63, 3, 63, 15, 15, 3, 255, 7, 15, 15, 63, 3, 255, 3, 63, 15, 15, 15, 511, 3, 15, 15, 255, 3, 255, 3, 63, 63, 15, 3, 1023, 7, 63, 15, 63, 3, 255, 15, 255, 15, 15, 3, 4095, 3, 15, 63, 127, 15, 255, 3, 63, 15, 255, 3, 4095, 3
Offset: 1
Examples
For all prime numbers p, a(p)=3, since those subsets are {{1,p},{1},{p}}.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Wasin So, Integral circulant graphs, Discr. Math. 306 (1) (2006) 153-158
Programs
-
Haskell
a100587 = (subtract 1) . (2 ^) . a000005' -- Reinhard Zumkeller, Jun 27 2015
-
Maple
A100587:=n->-1+2^numtheory[tau](n): seq(A100587(n), n=1..100); # Wesley Ivan Hurt, Dec 12 2015
-
Mathematica
Table[2^DivisorSigma[0, n] - 1, {n, 73}] (* Michael De Vlieger, Dec 11 2015 *)
-
PARI
a(n) = 2^(numdiv(n)) - 1; \\ Michel Marcus, Dec 15 2013
Formula
a(n) = -1 + 2^tau(n), where tau(n) = DivisorSigma(0, n) = A000005(n).
Comments