cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100612 a(n) = (0! + 1! + ... + (p-1)!) mod p, where p = prime(n).

Original entry on oeis.org

0, 1, 4, 6, 1, 10, 13, 9, 21, 17, 2, 5, 4, 16, 18, 13, 28, 22, 65, 68, 55, 20, 27, 76, 80, 13, 50, 43, 65, 109, 56, 81, 93, 134, 82, 10, 131, 4, 30, 104, 29, 170, 104, 165, 9, 122, 130, 42, 225, 50, 69, 12, 128, 60, 147, 52, 16, 56, 7, 218, 154, 264, 198, 48, 299, 205, 251, 101
Offset: 1

Views

Author

N. J. A. Sloane, Dec 02 2004

Keywords

Comments

The greedy inverse (indices of first occurrence of 1, 2, 3, ... in the sequence) is 2, 11, 91, 3, 12, 4, 59, -1, 8, 6, -1, 52, 7, 2550, -1, 14, 10, 15, 5461, 22, 9, 18, 205, 141, 4178, -1, 23, 17, 41, 39, -1, 5297, 937, -1, -1, -1, -1, 5248, 213, -1, 90, 48, 28, 4202, -1, 1718, 313, 64, 119, 27, ... where -1 means the number does not exist or is larger than 8000. - R. J. Mathar, Dec 19 2016
a(12397) = 31; a(54708) = 37. - Michel Marcus, May 11 2019
a(105527) = 35. - Michel Marcus, May 13 2019
a(16728884) = 26; a(62860131) = 35; sent by Milos Tatarevic. - Michel Marcus, May 18 2019

References

  • R. K. Guy, Unsolved Problems in Number Theory, B44: is a(n)>0 for n>2?

Crossrefs

See A049782 for more information. See also A003422, A236399.
Cf. A067462.

Programs

  • Maple
    lf:=n->add(k!,k=0..n-1);
    [seq(lf(ithprime(n)) mod ithprime(n),n=1..100)];
    # 2nd program:
    A100612 := proc(n)
        local p,f,a,k;
        f := 1 ;
        a := 0 ;
        p := ithprime(n) ;
        for k from 0 to p-1 do
            a := modp(a+f,p) ;
            f := modp(f*(k+1),p) ;
        end do:
        a ;
    end proc:
    seq(A100612(n),n=1..50) ; # R. J. Mathar, Dec 19 2016
  • Mathematica
    Table[Mod[Total[Range[0,n-1]!],n],{n,Prime[Range[70]]}] (* Harvey P. Dale, May 06 2013 *)
  • PARI
    a(n) = {my(p = prime(n), v = vector(p-1, k, Mod(k, p))); for (k=2, p-1, v[k] *= v[k-1];); lift(1+vecsum(v));} \\ Michel Marcus, May 05 2019

Formula

a(n) = A236399(n) mod prime(n).
a(n) = A067462(prime(n)) + 1, unless A067462(prime(n)) == - 1 (mod n). - Michel Marcus, May 05 2019