A165142
Numerators of a partial sum of 0, 1, 1/2, B_2, B_3, B_4,.., a modified Bernoulli sequence.
Original entry on oeis.org
0, 0, 1, 3, 5, 5, 49, 49, 58, 58, 341, 341, 1963, 1963, 14479, 14479, 39236, 39236, -2286593, -2286593, 81626353, 81626353, -928516601, -928516601, 127463912438, 127463912438, -6013599342683, -6013599342683, 149990958958943
Offset: 0
-
read("transforms") ; L := [0,0,1,1/2,seq(bernoulli(i),i=2..30)] ; PSUM(L) ; apply(numer,%) ; # R. J. Mathar, Dec 02 2010
-
b[n_] := BernoulliB[n-1]; b[0]=0; b[1]=1; b[2]=1/2; Join[{0}, Accumulate[ Table[b[n], {n, 0, 27}]] // Numerator] (* Jean-François Alcover_, Aug 09 2012 *)
A100649
a(n) is the numerator of 1 - Sum_{i=1..n} Bernoulli(i).
Original entry on oeis.org
1, 3, 4, 4, 41, 41, 47, 47, 289, 289, 1502, 1502, 15551, 15551, 5809, 5809, 3818123, 3818123, -76776508, -76776508, 934336415, 934336415, -127396984577, -127396984577, 6013822435553, 6013822435553, -149990624319638, -149990624319638, 167911724519886437, 167911724519886437
Offset: 0
1, 3/2, 4/3, 4/3, 41/30, 41/30, 47/35, 47/35, 289/210, 289/210, 1502/1155, 1502/1155, 15551/10010, 15551/10010, 5809/15015, 5809/15015, 3818123/510510, 3818123/510510, ...
-
A100649 := proc(n) 1-add( bernoulli(i),i=1..n) ; numer(%) ; end proc: # R. J. Mathar, Jul 01 2011
-
a[n_]:=Numerator[1-Sum[BernoulliB[i],{i,n}]]; Array[a,30,0] (* Stefano Spezia, Aug 25 2025 *)
A176250
Numerators of the fractions defined by 2 minus partial sums of the "original" Bernoulli numbers.
Original entry on oeis.org
2, 1, 1, 1, 1, 11, 11, 12, 12, 79, 79, 347, 347, 5541, 5541, -9206, -9206, 3307613, 3307613, -78393123, -78393123, 932396477, 932396477, -127419293864, -127419293864, 6013748071263, 6013748071263
Offset: 0
-
B := proc(n) if n = 1 then -bernoulli(n); else bernoulli(n); end if; end proc:
A176250 := proc(n) 2-add(B(i),i=0..n-1) ; numer(%) ;end proc:
seq(A176250(n),n=0..40) ; # R. J. Mathar, Jun 01 2011
A233565
Numerators of the autosequence preceding Br(n)=A229979(n)/(1 followed by A050932(n)).
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 5, 7, 7, 5, 5, 11, 11, 91, 91, -9, -9, 1207, 1207, -10849, -10849, 65879, 65879, -783127, -783127, 61098739, 61098739, -2034290233, -2034290233, 72986324461, 72986324461
Offset: 0
a(0)=a(1)=0, a(i)=numerators of 0+Br(0)=0, 0+Br(1)=1, 1+Br(2)=2, 2+Br(3)=5/2, 5/2+Br(4)=5/2,... .
-
nmax = 30; Br[0] = 0; Br[1] = Br[2] = 1; Br[n_] := Numerator[2*n*BernoulliB[n-1]] / Denominator[n*BernoulliB[n-1]]; Bp2 = Join[{0, 0}, Table[Br[n], {n, 0, nmax-2}] // Accumulate]; a[n_] := Numerator[Bp2[[n+1]]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Dec 18 2013 *)
A172194
Numerators of the inverse binomial transform of the sequence of fractions A172030(n)/A172031(n).
Original entry on oeis.org
0, 1, 1, 2, 2, 19, 19, 23, 23, 131, 131, 808, 808, 4469, 4469, 24221, 24221, -2797103, -2797103, 80009738, 80009738, -930456539, -930456539, 127441603151, 127441603151, -6013673706973, -6013673706973, 149990847412508, 149990847412508
Offset: 0
-
c := proc(n) option remember; if n <=1 then n; elif n = 2 then 2*procname(n-1)-bernoulli(n-1) ; else 2*procname(n-1)+bernoulli(n-1) ; end if; end proc:
L := [seq(c(n),n=0..30)] ; read("transforms") ; BINOMIALi(L) ; apply(numer,%) ; # R. J. Mathar, Dec 21 2010
A174263
Numerator of the n-th term of the inverse Binomial Transform of the Bernoulli sequence prefixed with 0.
Original entry on oeis.org
0, 1, -5, 14, -23, 349, -499, 793, -1038, 7901, -9791, 65488, -78193, 795259, -925389, 1615811, -1841036, 67142767, -75821437, 358067518, -388783203, -521129621, 480390923, 133108162049
Offset: 0
-
read("transforms") ;
A174264 := proc(n) local b; b := [0,seq(bernoulli(i),i=0..n+1)] ; BINOMIALi(b) ; numer(op(n+1,%)) ; end proc:
seq(A174264(n),n=0..30) ; # R. J. Mathar, Jan 21 2011
Showing 1-6 of 6 results.
Comments