A100650
Denominator of 1 - Sum_{i=1..n} Bernoulli(i).
Original entry on oeis.org
1, 2, 3, 3, 30, 30, 35, 35, 210, 210, 1155, 1155, 10010, 10010, 15015, 15015, 510510, 510510, 1616615, 1616615, 1939938, 1939938, 22309287, 22309287, 74364290, 74364290, 111546435, 111546435, 6469693230, 6469693230, 33426748355, 33426748355, 200560490130, 200560490130
Offset: 0
1, 3/2, 4/3, 4/3, 41/30, 41/30, 47/35, 47/35, 289/210, 289/210, 1502/1155, 1502/1155, 15551/10010, 15551/10010, 5809/15015, 5809/15015, 3818123/510510, 3818123/510510, ...
-
A100650 := proc(n) 1-add( bernoulli(i),i=1..n) ; denom(%) ; end proc: # R. J. Mathar, Jul 01 2011
-
Denominator[1-Accumulate[BernoulliB[Range[0,40]]]] (* Harvey P. Dale, Feb 19 2015 *)
-
a(n) = denominator(1 - sum(i=1, n, bernfrac(i))); \\ Michel Marcus, Feb 15 2021
A176250
Numerators of the fractions defined by 2 minus partial sums of the "original" Bernoulli numbers.
Original entry on oeis.org
2, 1, 1, 1, 1, 11, 11, 12, 12, 79, 79, 347, 347, 5541, 5541, -9206, -9206, 3307613, 3307613, -78393123, -78393123, 932396477, 932396477, -127419293864, -127419293864, 6013748071263, 6013748071263
Offset: 0
-
B := proc(n) if n = 1 then -bernoulli(n); else bernoulli(n); end if; end proc:
A176250 := proc(n) 2-add(B(i),i=0..n-1) ; numer(%) ;end proc:
seq(A176250(n),n=0..40) ; # R. J. Mathar, Jun 01 2011
A172194
Numerators of the inverse binomial transform of the sequence of fractions A172030(n)/A172031(n).
Original entry on oeis.org
0, 1, 1, 2, 2, 19, 19, 23, 23, 131, 131, 808, 808, 4469, 4469, 24221, 24221, -2797103, -2797103, 80009738, 80009738, -930456539, -930456539, 127441603151, 127441603151, -6013673706973, -6013673706973, 149990847412508, 149990847412508
Offset: 0
-
c := proc(n) option remember; if n <=1 then n; elif n = 2 then 2*procname(n-1)-bernoulli(n-1) ; else 2*procname(n-1)+bernoulli(n-1) ; end if; end proc:
L := [seq(c(n),n=0..30)] ; read("transforms") ; BINOMIALi(L) ; apply(numer,%) ; # R. J. Mathar, Dec 21 2010
Showing 1-3 of 3 results.
Comments