A100682 Floor of 4th root of pentatope numbers.
0, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31
Offset: 0
Examples
a(3) = 1 because floor((3*4*5*6/24)^(1/4)) = floor(15^(1/4)) = floor(1.96798967) = 1.
References
- J. H. Conway and R. K. Guy, The Book of Numbers, pp. 55-57, Copernicus Press, NY, 1996.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Jonathan Vos Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number
Programs
-
Magma
[Floor(Binomial(n+3, 4)^(1/4)): n in [3..70]]; // Vincenzo Librandi, Dec 14 2015
-
Maple
a:= n-> floor(binomial(n+3, 4)^(1/4)): seq(a(n), n=0..70); # Alois P. Heinz, Dec 14 2015
-
PARI
a(n)=binomial(n+3,4)^(1/4)\1 \\ Charles R Greathouse IV, May 01 2012
-
PARI
a(n)=sqrtnint(binomial(n+3,4),4) \\ Charles R Greathouse IV, Dec 14 2015
-
Python
from math import comb from sympy import integer_nthroot def A100682(n): return integer_nthroot(comb(n+3,4),4)[0] # Chai Wah Wu, Oct 02 2024
Formula
a(n) = floor((A000332(n+3))^(1/4)) = floor(Ptop(n)^(1/4)) = floor(C(n+3, 4)^1/4) = floor((n * (n+1) * (n+2) * (n+3)/4!)^(1/4)).
a(n) = 0.4518... * n + O(1). - Charles R Greathouse IV, Dec 14 2015
Comments