cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100747 A modular recurrence.

Original entry on oeis.org

1, 3, 15, 45, 225, 675, 3375, 10125, 50625, 151875, 759375, 2278125, 11390625, 34171875, 170859375, 512578125, 2562890625, 7688671875, 38443359375, 115330078125, 576650390625, 1729951171875, 8649755859375, 25949267578125
Offset: 0

Views

Author

Paul Barry, Dec 06 2004

Keywords

Comments

Interpolated zeros suppressed.
The inverse mod 2 binomial transform of 2^n is 1,1,3,3,15,15,... (A100735).

Crossrefs

Cf. A101553.
Bisection of A100735.

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 15*Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 16 2018
  • Maple
    a:=n->mul(4+(-1)^j,j=1..n):seq(a(n),n=0..23); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    LinearRecurrence[{0, 15}, {1, 3}, 50] (* or *) RecurrenceTable[{a[n] == (5 - 2*Mod[n/2, 2])*a[n - 2], a[0] == 1, a[1] == 0}, a, {n, 0, 50}][[1 ;; ;; 2]] (* G. C. Greubel, Apr 16 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x)/(1-15*x^2)) \\ G. C. Greubel, Apr 16 2018
    

Formula

a(n) = b(2*n) where b(0)=1, b(1)=0, b(n) = (5 - 2*(n/2 mod 2))b(n-2).
a(n) = A101553(2*(n+1))/5.
a(2*n) = 15^n, a(2*n+1) = 3 * 15^n. - Ralf Stephan, May 16 2007
O.g.f.: (1+3*x)/(1-15*x^2). - R. J. Mathar, Feb 04 2008

A100736 Inverse modulo 2 binomial transform of 3^n.

Original entry on oeis.org

1, 2, 8, 16, 80, 160, 640, 1280, 6560, 13120, 52480, 104960, 524800, 1049600, 4198400, 8396800, 43046720, 86093440, 344373760, 688747520, 3443737600, 6887475200, 27549900800, 55099801600, 282386483200, 564772966400
Offset: 0

Views

Author

Paul Barry, Dec 06 2004

Keywords

Comments

3^n may be retrieved as Sum_{k=0..n} (binomial(n,k) mod 2)*A100736(k).

Crossrefs

Programs

  • PARI
    a(n)=abs(sum(k=0, n, (-1)^(hammingweight(k)%2)* lift(Mod(binomial(n, k), 2))*3^k)) \\ Jianing Song, Jan 27 2019

Formula

a(n) = Sum_{k=0..n} (-1)^A010060(n-k)*(binomial(n, k) mod 2)*3^k.

A101554 Second inverse mod 2 binomial transform of 2^n.

Original entry on oeis.org

1, 2, 14, 28, 254, 508, 3556, 7112, 65534, 131068, 917476, 1834952, 16645636, 33291272, 233038904, 466077808, 4294967294, 8589934588, 60129542116, 120259084232, 1090921692676, 2181843385352, 15272903697464, 30545807394928
Offset: 0

Views

Author

Paul Barry, Dec 06 2004

Keywords

Comments

Interpolated zeros suppressed.

Formula

a(n)=sum{k=0..n, (-1)^A010060(n-k)*mod(binomial(n, k), 2)A100735(k)}.
Showing 1-3 of 3 results.