A100743 Number of labeled n-vertex graphs without vertices of degree <=1.
1, 0, 0, 1, 10, 253, 12068, 1052793, 169505868, 51046350021, 29184353055900, 32122563615242615, 68867440268165982320, 290155715157676330952559, 2417761590648159731258579164, 40013923822242935823157820555477, 1318910080336893719646370269435043184
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Aug 18 2019: (Start) The a(4) = 10 edge-sets: {12,13,24,34} {12,14,23,34} {13,14,23,24} {12,13,14,23,24} {12,13,14,23,34} {12,13,14,24,34} {12,13,23,24,34} {12,14,23,24,34} {13,14,23,24,34} {12,13,14,23,24,34} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
m = 13; egf = Exp[-x + x^2/2]*Sum[2^(n (n-1)/2)*(x/Exp[x])^n/n!, {n, 0, m+1}]; s = egf + O[x]^(m+1); a[n_] := n!*SeriesCoefficient[s, n]; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Feb 23 2019 *) Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]>1&]],{n,0,4}] (* Gus Wiseman, Aug 18 2019 *)
-
PARI
seq(n)={Vec(serlaplace(exp(-x + x^2/2 + O(x*x^n))*sum(k=0, n, 2^(k*(k-1)/2)*(x/exp(x + O(x^n)))^k/k!)))} \\ Andrew Howroyd, Sep 04 2019
Formula
E.g.f.: exp(-x+x^2/2)*(Sum_{n>=0} 2^(n*(n-1)/2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Jan 26 2006
Exponential transform of A059166. - Gus Wiseman, Aug 18 2019
Inverse binomial transform of A059167. - Gus Wiseman, Sep 02 2019
Extensions
Terms a(14) and beyond from Andrew Howroyd, Sep 04 2019