cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A006125 a(n) = 2^(n*(n-1)/2).

Original entry on oeis.org

1, 1, 2, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, 35184372088832, 36028797018963968, 73786976294838206464, 302231454903657293676544, 2475880078570760549798248448, 40564819207303340847894502572032, 1329227995784915872903807060280344576
Offset: 0

Views

Author

Keywords

Comments

Number of graphs on n labeled nodes; also number of outcomes of labeled n-team round-robin tournaments.
Number of perfect matchings of order n Aztec diamond. [see Speyer]
Number of Gelfand-Zeitlin patterns with bottom row [1,2,3,...,n]. [Zeilberger]
For n >= 1 a(n) is the size of the Sylow 2-subgroup of the Chevalley group A_n(2) (sequence A002884). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001
From James Propp: (Start)
a(n) is the number of ways to tile the region
o-----o
|.....|
o--o.....o--o
|...........|
o--o...........o--o
|.................|
o--o.................o--o
|.......................|
|.......................|
|.......................|
o--o.................o--o
|.................|
o--o...........o--o
|...........|
o--o.....o--o
|.....|
o-----o
(top-to-bottom distance = 2n) with dominoes like either of
o--o o-----o
|..| or |.....|
|..| o-----o
|..|
o--o
(End)
The number of domino tilings in A006253, A004003, A006125 is the number of perfect matchings in the relevant graphs. There are results of Jockusch and Ciucu that if a planar graph has a rotational symmetry then the number of perfect matchings is a square or twice a square - this applies to these 3 sequences. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Let M_n denotes the n X n matrix with M_n(i,j)=binomial(2i,j); then det(M_n)=a(n+1). - Benoit Cloitre, Apr 21 2002
Smallest power of 2 which can be expressed as the product of n distinct numbers (powers of 2), e.g., a(4) = 1024 = 2*4*8*16. Also smallest number which can be expressed as the product of n distinct powers. - Amarnath Murthy, Nov 10 2002
The number of binary relations that are both reflexive and symmetric on an n-element set. - Justin Witt (justinmwitt(AT)gmail.com), Jul 12 2005
The number of symmetric binary relations on an (n-1)-element set. - Peter Kagey, Feb 13 2021
To win a game, you must flip n+1 heads in a row, where n is the total number of tails flipped so far. Then the probability of winning for the first time after n tails is A005329 / A006125. The probability of having won before n+1 tails is A114604 / A006125. - Joshua Zucker, Dec 14 2005
a(n) = A126883(n-1)+1. - Zerinvary Lajos, Jun 12 2007
Equals right border of triangle A158474 (unsigned). - Gary W. Adamson, Mar 20 2009
a(n-1) is the number of simple labeled graphs on n nodes such that every node has even degree. - Geoffrey Critzer, Oct 21 2011
a(n+1) is the number of symmetric binary matrices of size n X n. - Nathan J. Russell, Aug 30 2014
Let T_n be the n X n matrix with T_n(i,j) = binomial(2i + j - 3, j-1); then det(T_n) = a(n). - Tony Foster III, Aug 30 2018
k^(n*(n-1)/2) is the determinant of n X n matrix T_(i,j) = binomial(k*i + j - 3, j-1), in this case k=2. - Tony Foster III, May 12 2019
Let B_n be the n+1 X n+1 matrix with B_n(i, j) = Sum_{m=max(0, j-i)..min(j, n-i)} (binomial(i, j-m) * binomial(n-i, m) * (-1)^m), 0<=i,j<=n. Then det B_n = a(n+1). Also, deleting the first row and any column from B_n results in a matrix with determinant a(n). The matrices B_n have the following property: B_n * [x^n, x^(n-1) * y, x^(n-2) * y^2, ..., y^n]^T = [(x-y)^n, (x-y)^(n-1) * (x+y), (x-y)^(n-2) * (x+y)^2, ..., (x+y)^n]^T. - Nicolas Nagel, Jul 02 2019
a(n) is the number of positive definite (-1,1)-matrices of size n X n. - Eric W. Weisstein, Jan 03 2021
a(n) is the number of binary relations on a labeled n-set that are both total and antisymmetric. - José E. Solsona, Feb 05 2023

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
This sequence counts labeled graphs on n vertices. For example, the a(0) = 1 through a(2) = 8 graph edge sets are:
  {}  {}  {}    {}
          {12}  {12}
                {13}
                {23}
                {12,13}
                {12,23}
                {13,23}
                {12,13,23}
This sequence also counts labeled graphs with loops on n - 1 vertices. For example, the a(1) = 1 through a(3) = 8 edge sets are the following. A loop is represented as an edge with two equal vertices.
  {}  {}    {}
      {11}  {11}
            {12}
            {22}
            {11,12}
            {11,22}
            {12,22}
            {11,12,22}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 547 (Fig. 9.7), 573.
  • G. Everest, A. van der Poorten, I. Shparlinski, and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; p. 178.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 517.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 178.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 3, Eq. (1.1.2).
  • J. Propp, Enumeration of matchings: problems and progress, in: New perspectives in geometric combinatorics, L. Billera et al., eds., Mathematical Sciences Research Institute series, vol. 38, Cambridge University Press, 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000568 for the unlabeled analog, A053763, A006253, A004003.
Cf. A001187 (connected labeled graphs).
Cf. A158474. - Gary W. Adamson, Mar 20 2009
Cf. A136652 (log). - Paul D. Hanna, Dec 04 2009
The unlabeled version is A000088, or A002494 without isolated vertices.
The directed version is A002416.
The covering case is A006129.
The version for hypergraphs is A058891, or A016031 without singletons.
Row sums of A143543.
The case of connected edge set is A287689.

Programs

Formula

Sequence is given by the Hankel transform of A001003 (Schroeder's numbers) = 1, 1, 3, 11, 45, 197, 903, ...; example: det([1, 1, 3, 11; 1, 3, 11, 45; 3, 11, 45, 197; 11, 45, 197, 903]) = 2^6 = 64. - Philippe Deléham, Mar 02 2004
a(n) = 2^floor(n^2/2)/2^floor(n/2). - Paul Barry, Oct 04 2004
G.f. satisfies: A(x) = 1 + x*A(2x). - Paul D. Hanna, Dec 04 2009
a(n) = 2 * a(n-1)^2 / a(n-2). - Michael Somos, Dec 30 2012
G.f.: G(0)/x - 1/x, where G(k) = 1 + 2^(k-1)*x/(1 - 1/(1 + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
E.g.f. satisfies A'(x) = A(2x). - Geoffrey Critzer, Sep 07 2013
Sum_{n>=1} 1/a(n) = A299998. - Amiram Eldar, Oct 27 2020
a(n) = s_lambda(1,1,...,1) where s is the Schur polynomial in n variables and lambda is the partition (n,n-1,n-2,...,1). - Leonid Bedratyuk, Feb 06 2022
a(n) = Product_{1 <= j <= i <= n-1} (i + j)/(2*i - 2*j + 1). Cf. A007685. - Peter Bala, Oct 25 2024

Extensions

More terms from Vladeta Jovovic, Apr 09 2000

A095983 Number of 2-edge-connected labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0

Views

Author

Yifei Chen (yifei(AT)mit.edu), Jul 17 2004

Keywords

Comments

From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019

Crossrefs

The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.

Programs

  • Mathematica
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
  • PARI
    \\ here p is initially A053549, q is A198046 as e.g.f.s.
    seq(n)={my(v=vector(n));
    my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
    my(q=x*exp(p)); p-=q;
    for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
    concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
    
  • PARI
    seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020

Formula

a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019

Extensions

Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018

A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2014

Keywords

Crossrefs

Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    m = 16;
    egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
    A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    a[n_] := 2^(n(n-1)/2) - A059167[n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] (* Gus Wiseman, Sep 11 2019 *)

Formula

a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).

Extensions

a(9)-a(16) from Andrew Howroyd, Oct 26 2017

A327227 Number of labeled simple graphs covering n vertices with at least one endpoint/leaf.

Original entry on oeis.org

0, 0, 1, 3, 31, 515, 15381, 834491, 83016613, 15330074139, 5324658838645, 3522941267488973, 4489497643961740521, 11119309286377621015089, 53893949089393110881259181, 513788884660608277842596504415, 9669175277199248753133328740702449
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Covering means there are no isolated vertices.
A leaf is an edge containing a vertex that does not belong to any other edge, while an endpoint is a vertex belonging to only one edge.
Also graphs with minimum vertex-degree 1.

Examples

			The a(4) = 31 edge-sets:
  {12,34}  {12,13,14}  {12,13,14,23}
  {13,24}  {12,13,24}  {12,13,14,24}
  {14,23}  {12,13,34}  {12,13,14,34}
           {12,14,23}  {12,13,23,24}
           {12,14,34}  {12,13,23,34}
           {12,23,24}  {12,14,23,24}
           {12,23,34}  {12,14,24,34}
           {12,24,34}  {12,23,24,34}
           {13,14,23}  {13,14,23,34}
           {13,14,24}  {13,14,24,34}
           {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
		

Crossrefs

Column k=1 of A327366.
The non-covering version is A245797.
The unlabeled version is A324693.
The generalization to set-systems is A327229.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]

Formula

Inverse binomial transform of A245797, if we assume A245797(0) = 0.

A059166 Number of n-node connected labeled graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 10, 253, 12058, 1052443, 169488200, 51045018089, 29184193354806, 32122530765469967, 68867427921051098084, 290155706369032525823085, 2417761578629525173499004146, 40013923790443379076988789688611, 1318910080173114018084245406769861936
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2001

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 404.

Crossrefs

Cf. A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).

Programs

  • Maple
    c:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)*2^((n-k)*(n-k-1)/2)*c(k), k=1..n-1)/n)
        end:
    a:= n-> max(0, add((-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, i=0..n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 27 2017
  • Mathematica
    Flatten[{1,1,0,Table[n!*Sum[(-1)^(n-j)*SeriesCoefficient[1+Log[Sum[2^(k*(k-1)/2)*x^k/k!,{k,0,j}]],{x,0,j}]*j^(n-j)/(n-j)!,{j,0,n}],{n,3,15}]}] (* Vaclav Kotesovec, May 14 2015 *)
    c[0] = 1; c[n_] := c[n] = 2^(n*(n-1)/2) - Sum[k*Binomial[n, k]*2^((n-k)*(n - k - 1)/2)*c[k], {k, 1, n-1}]/n; a[0] = a[1] = 1; a[2] = 0; a[n_] := Sum[(-1)^i*Binomial[n, i]*c[n-i]*(n-i)^i, {i, 0, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 27 2017, using Alois P. Heinz's code for c(n) *)
  • PARI
    seq(n)={Vec(serlaplace(1 + x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))))} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = Sum_{i=0..n} (-1)^i*binomial(n, i)*c(n-i)*(n-i)^i, for n>2, a(0)=1, a(1)=1, a(2)=0, where c(n) is number of n-node connected labeled graphs (cf. A001187).
E.g.f.: 1 + x^2/2 + log(Sum_{n >= 0} 2^binomial(n, 2)*(x*exp(-x))^n/n!).
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, May 14 2015
Logarithmic transform of A100743, if we assume a(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001

A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
      1
      1     0
      1     0     1
      2     0     6     0
     15    12    30     4     3
    314   320   260    80    50     0
  13757 10890  5445  1860   735    66    15
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A245797.
Column k = 0 is A059167.
Column k = 1 is A277072.
Column k = 2 is A277073.
Column k = 3 is A277074.
Column k = n is A123023.
Column k = n - 1 is A327370.
The unlabeled version is A327371.
The covering version is A327377.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A261919 Number of n-node unlabeled graphs without isolated nodes or endpoints (i.e., no nodes of degree 0 or 1).

Original entry on oeis.org

1, 0, 0, 1, 3, 11, 62, 510, 7459, 197867, 9808968, 902893994, 153723380584, 48443158427276, 28363698856991892, 30996526139142442460, 63502034434187094606966, 244852545450108200518282934, 1783161611521019613186341526720, 24603891216946828886755056314074748
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2015

Keywords

Examples

			From _Gus Wiseman_, Aug 15 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(5) = 11 graphs (empty columns not shown):
  {}  {12,13,23}  {12,13,24,34}        {12,13,24,35,45}
                  {13,14,23,24,34}     {12,14,25,34,35,45}
                  {12,13,14,23,24,34}  {12,15,25,34,35,45}
                                       {13,14,23,24,35,45}
                                       {12,13,24,25,34,35,45}
                                       {13,15,24,25,34,35,45}
                                       {14,15,24,25,34,35,45}
                                       {12,13,15,24,25,34,35,45}
                                       {14,15,23,24,25,34,35,45}
                                       {13,14,15,23,24,25,34,35,45}
                                       {12,13,14,15,23,24,25,34,35,45}
(End)
		

References

  • F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.

Crossrefs

Cf. A004108 (connected version), A004110 (version allowing isolated nodes).
The labeled version is A100743.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1-x^p[[i]], {i, 1, Length[p]}], x, n-k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; b[0] = 1;
    a[n_] := b[n] - b[n-1];
    a /@ Range[0, 19] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A004110 *)

Formula

First differences of A004110: a(n) = A004110(n)-A004110(n-1).
Euler transform of A004108, if we assume A004108(1) = 0. - Gus Wiseman, Aug 15 2019

Extensions

a(1)-a(11) computed by Brendan McKay, Sep 15 2015
a(12)-a(26) computed from A004110 by Max Alekseyev, Sep 16 2015
a(0) = 1 prepended by Gus Wiseman, Aug 15 2019

A327370 Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).

Original entry on oeis.org

0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

Graphs consist of zero or more paths on two nodes each and either a single isolated node or a star with two or more peripheral nodes. - Andrew Howroyd, Sep 05 2019

Examples

			The a(4) = 4 edge-sets:
  {12,13,14}
  {12,23,24}
  {13,23,34}
  {14,24,34}
		

Crossrefs

Column k = n - 1 of A327369.
The unlabeled version is A028242.

Programs

  • Maple
    f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 06 2019
  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==n-1&]],{n,0,5}]
    With[{nn=30},CoefficientList[Series[x Exp[x^2/2](Exp[x]-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019

Formula

E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 23, 31, 9, 1, 0, 256, 515, 227, 25, 1, 0, 5319, 15381, 10210, 1782, 75, 1, 0, 209868, 834491, 815867, 221130, 15564, 231, 1, 0, 15912975, 83016613, 116035801, 47818683, 5499165, 151455, 763, 1, 0, 2343052576, 15330074139, 29550173053, 18044889597, 3291232419, 158416629, 1635703, 2619, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - Andrew Howroyd, Mar 09 2020

Examples

			Triangle begins:
     1
     1     0
     1     1     0
     4     3     1     0
    23    31     9     1     0
   256   515   227    25     1     0
  5319 15381 10210  1782    75     1     0
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A006129.
Row sums without the first two columns are A100743.
Column k = 0 is A327367(n > 0).
Column k = 1 is A327227.
The unlabeled version is A294217.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}]
  • PARI
    GraphsByMaxDegree(n)={
      local(M=Map(Mat([x^0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
      my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
      Mat(M);
    }
    Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 09 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019
Showing 1-10 of 13 results. Next