cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A245797 The number of labeled graphs of n vertices that have endpoints, where an endpoint is a vertex with degree 1.

Original entry on oeis.org

0, 1, 6, 49, 710, 19011, 954184, 90154415, 16108626420, 5481798833245, 3582369649269620, 4532127781040045649, 11177949079089720090800, 54050029251399545975868271, 514598463471970554205910304780, 9677402372862708729859372687791391
Offset: 1

Views

Author

Chai Wah Wu, Aug 01 2014

Keywords

Crossrefs

Equal to row sums of A245796.
The covering case is A327227.
The connected case is A327362.
The generalization to set-systems is A327228.
BII-numbers of set-systems with minimum degree 1 are A327105.

Programs

  • Mathematica
    m = 16;
    egf = Exp[x^2/2]*Sum[2^Binomial[n, 2]*(x/Exp[x])^n/n!, {n, 0, m}];
    A059167[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!;
    a[n_] := 2^(n(n-1)/2) - A059167[n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] (* Gus Wiseman, Sep 11 2019 *)

Formula

a(n) = 2^(n*(n+1)/2) - A059167(n).
Binomial transform of A327227 (assuming a(0) = 0).

Extensions

a(9)-a(16) from Andrew Howroyd, Oct 26 2017

A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
      1
      1     0
      1     0     1
      2     0     6     0
     15    12    30     4     3
    314   320   260    80    50     0
  13757 10890  5445  1860   735    66    15
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A245797.
Column k = 0 is A059167.
Column k = 1 is A277072.
Column k = 2 is A277073.
Column k = 3 is A277074.
Column k = n is A123023.
Column k = n - 1 is A327370.
The unlabeled version is A327371.
The covering version is A327377.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 10, 12, 12, 4, 3, 253, 260, 160, 60, 35, 0, 12068, 9150, 4230, 1440, 480, 66, 15, 1052793, 570906, 195048, 53200, 12600, 2310, 427, 0, 169505868, 63523656, 15600032, 3197040, 585620, 95088, 14056, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A graph is covering if there are no isolated vertices.

Examples

			Triangle begins:
      1
      0     0
      0     0     1
      1     0     3     0
     10    12    12     4     3
    253   260   160    60    35     0
  12068  9150  4230  1440   480    66    15
		

Crossrefs

Row sums are A006129.
Column k = 0 is A100743.
Column k = n is A123023.
Row sums without the first column are A327227.
The non-covering version is A327369.
The unlabeled version is A327372.

Programs

  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise inverse binomial transform of A327369.
E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 05 2019

A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 6, 46, 655, 17991, 927416, 89009740, 16020407709, 5468601546685, 3578414666656214, 4529751815161579194, 11175105490563109463875, 54043272967471942825421219, 514566625051705610110588073460, 9677104749727084630538798805505880
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			The a(4) = 46 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}
  {13}  {12,14}  {12,13,24}  {12,13,14,24}
  {14}  {12,23}  {12,13,34}  {12,13,14,34}
  {23}  {12,24}  {12,14,23}  {12,13,23,24}
  {24}  {13,14}  {12,14,34}  {12,13,23,34}
  {34}  {13,23}  {12,23,24}  {12,14,23,24}
        {13,34}  {12,23,34}  {12,14,24,34}
        {14,24}  {12,24,34}  {12,23,24,34}
        {14,34}  {13,14,23}  {13,14,23,34}
        {23,24}  {13,14,24}  {13,14,24,34}
        {23,34}  {13,23,24}  {13,23,24,34}
        {24,34}  {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
		

Crossrefs

The covering case is A327362.
Graphs with endpoints are A245797.
Graphs with connected edge-set are A287689.
Connected graphs with bridges are A327071.
Covering graphs with endpoints are A327227.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Binomial transform of A327362.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A324693 Number of simple graphs on n unlabeled nodes with minimum degree exactly 1.

Original entry on oeis.org

0, 1, 1, 4, 12, 60, 378, 3843, 64455, 1921532, 104098702, 10348794144, 1893781768084, 639954768875644, 400905675004630820, 467554784370658979194, 1019317687720204607541914, 4170177760438554428852944352, 32130458453030025927403299167172
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2019

Keywords

Crossrefs

Column k = 1 of A294217.
A diagonal of A263293.
The labeled version is A327227.
The generalization to set-systems is A327335, with covering case A327230.
Unlabeled covering graphs are A002494.

Formula

a(n) = A002494(n) - A261919(n).
First differences of A141580. - Andrew Howroyd, Jan 11 2021
Showing 1-5 of 5 results.