cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A028242 Follow n+1 by n. Also (essentially) Molien series of 2-dimensional quaternion group Q_8.

Original entry on oeis.org

1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, 20, 22, 21, 23, 22, 24, 23, 25, 24, 26, 25, 27, 26, 28, 27, 29, 28, 30, 29, 31, 30, 32, 31, 33, 32, 34, 33, 35, 34, 36, 35, 37, 36, 38
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003
Number of permutations of [n+1] avoiding the patterns 123, 132 and 231 and having exactly one fixed point. Example: a(0) because we have 1; a(2)=2 because we have 213 and 321; a(3)=1 because we have 3214. - Emeric Deutsch, Nov 17 2005
The ring of invariants for the standard action of Quaternions on C^2 is generated by x^4 + y^4, x^2 * y^2, and x * y * (x^4 - y^4). - Michael Somos, Mar 14 2011
A000027 and A001477 interleaved. - Omar E. Pol, Feb 06 2012
First differences are A168361, extended by an initial -1. (Or: a(n)-a(n-1) = A168361(n+1), for all n >= 1.) - M. F. Hasler, Oct 05 2017
Also the number of unlabeled simple graphs with n + 1 vertices and exactly n endpoints (vertices of degree 1). The labeled version is A327370. - Gus Wiseman, Sep 06 2019

Examples

			G.f. = 1 + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 4*x^6 + 3*x^7 + 5*x^8 + 4*x^9 + 6*x^10 + 5*x^11 + ...
Molien g.f. = 1 + 2*t^4 + t^6 + 3*t^8 + 2*t^10 + 4*t^12 + 3*t^14 + 5*t^16 + 4*t^18 + 6*t^20 + ...
		

References

  • D. Benson, Polynomial Invariants of Finite Groups, Cambridge, p. 23.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 15.
  • M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 97.
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 90.

Crossrefs

Cf. A000124 (a=1, a=n+a), A028242 (a=1, a=n-a).
Partial sums give A004652. A030451(n)=a(n+1), n>0.
Cf. A052938 (same sequence except no leading 1,0,2).
Column k = n - 1 of A327371.

Programs

  • GAP
    a:=[1];; for n in [2..80] do a[n]:=(n-1)-a[n-1]; od; a; # Muniru A Asiru, Dec 16 2018
    
  • Haskell
    import Data.List (transpose)
    a028242 n = n' + 1 - m where (n',m) = divMod n 2
    a028242_list = concat $ transpose [a000027_list, a001477_list]
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    &cat[ [n+1, n]: n in [0..37] ]; // Klaus Brockhaus, Nov 23 2009
    
  • Maple
    series((1+x^3)/(1-x^2)^2,x,80);
    A028242:=n->floor((n+1+(-1)^n)/2): seq(A028242(n), n=0..100); # Wesley Ivan Hurt, Mar 17 2015
  • Mathematica
    Table[(1 + 2 n + 3 (-1)^n)/4, {n, 0, 74}] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 0, 2}, 75] (* or *)
    CoefficientList[Series[(1 - x + x^2)/((1 - x) (1 - x^2)), {x, 0, 74}], x] (* Michael De Vlieger, May 21 2017 *)
    Table[{n,n-1},{n,40}]//Flatten (* Harvey P. Dale, Jun 26 2017 *)
    Table[3*floor(n/2)-n+1,{n,0,40}] (* Pierre-Alain Sallard, Dec 15 2018 *)
  • PARI
    {a(n) = (n\2) - (n%2) + 1} \\ Michael Somos, Oct 02 1999
    
  • PARI
    A028242(n)=n\2+!bittest(n,0) \\ M. F. Hasler, Oct 05 2017
    
  • Sage
    s=((1+x^3)/(1-x^2)^2).series(x, 80); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018

Formula

Expansion of the Molien series for standard action of Quaternions on C^2: (1 + t^6) / (1 - t^4)^2 = (1 - t^12) / ((1 - t^4)^2 * (1 - t^6)) in powers of t^2.
Euler transform of length 6 sequence [0, 2, 1, 0, 0, -1]. - Michael Somos, Mar 14 2011
a(n) = n - a(n-1) [with a(0) = 1] = A000035(n-1) + A004526(n). - Henry Bottomley, Jul 25 2001
G.f.: (1 - x + x^2) / ((1 - x) * (1 - x^2)) = ( 1+x^2-x ) / ( (1+x)*(x-1)^2 ).
a(2*n) = n + 1, a(2*n + 1) = n, a(-1 - n) = -a(n).
a(n) = a(n - 1) + a(n - 2) - a(n - 3).
a(n) = floor(n/2) + 1 - n mod 2. a(2*k) = k+1, a(2*k+1) = k; A110657(n) = a(a(n)), A110658(n) = a(a(a(n))); a(n) = A109613(n)-A110654(n) = A110660(n)/A110654(n). - Reinhard Zumkeller, Aug 05 2005
a(n) = 2*floor(n/2) - floor((n-1)/2). - Wesley Ivan Hurt, Oct 22 2013
a(n) = floor((n+1+(-1)^n)/2). - Wesley Ivan Hurt, Mar 15 2015
a(n) = (1 + 2n + 3(-1)^n)/4. - Wesley Ivan Hurt, Mar 18 2015
a(n) = Sum_{i=1..floor(n/2)} floor(n/(n-i)) for n > 0. - Wesley Ivan Hurt, May 21 2017
a(2n) = n+1, a(2n+1) = n, for all n >= 0. - M. F. Hasler, Oct 05 2017
a(n) = 3*floor(n/2) - n + 1. - Pierre-Alain Sallard, Dec 15 2018
E.g.f.: ((2 + x)*cosh(x) + (x - 1)*sinh(x))/2. - Stefano Spezia, Aug 01 2022
Sum_{n>=2} (-1)^(n+1)/a(n) = 1. - Amiram Eldar, Oct 04 2022

Extensions

First part of definition adjusted to match offset by Klaus Brockhaus, Nov 23 2009

A059167 Number of n-node labeled graphs without endpoints.

Original entry on oeis.org

1, 1, 1, 2, 15, 314, 13757, 1142968, 178281041, 52610850316, 29702573255587, 32446427369694348, 69254848513798160815, 291053505824567573585744, 2421830049319361003822380177, 40050220743831370293688592267252, 1319550593412053164173947687592553185
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2001

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=0 of A327369.
Cf. A059166 (n-node connected labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A004110 (n-node unlabeled graphs without endpoints).

Programs

  • Maple
    F:= proc(N) local S;
       S:= series(exp(1/2*x^2)*Sum(2^binomial(n, 2)*(x/exp(x))^n/n!, n = 0 .. N),x,N+1);
       seq(coeff(S,x,i)*i!,i=0..N)
    end proc:
    F(20); # Robert Israel, Sep 18 2016
  • Mathematica
    b[n_] := If[n < 3, Boole[n == 1], n!*Sum[(-1)^(n - j) * SeriesCoefficient[1 + Log[Sum[2^(k*(k - 1)/2)*x^k/k!, {k, 0, j}]], {x, 0, j}] * j^(n - j)/(n - j)!, {j, 0, n}]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, i] b[i + 1] a[n - i - 1], {i, 0, n - 1}]; Table[a@ n, {n, 0, 15}] (* Michael De Vlieger, Sep 19 2016, after Vaclav Kotesovec at A059166 *)
  • PARI
    seq(n)={my(A=x/exp(x + O(x^n))); Vec(serlaplace(exp(x^2/2 + O(x*x^n)) * sum(k=0, n, 2^binomial(k, 2)*A^k/k!)))} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = Sum_{i=0..n-1} binomial(n-1, i)*b(i+1)*a(n-i-1), n>0, a(0)=1, where b(n) is number of n-node connected labeled graphs without endpoints (Cf. A059166).
E.g.f.: exp(x^2/2)*(Sum_{n >= 0} 2^binomial(n, 2)*(x/exp(x))^n/n!). - Vladeta Jovovic, Mar 23 2004
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, Sep 22 2016

Extensions

More terms from John Renze (jrenze(AT)yahoo.com), Feb 01 2001

A327371 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
     1;
     1,    0;
     1,    0,   1;
     2,    0,   2,   0;
     5,    1,   3,   1,  1;
    16,    6,   7,   2,  3,  0;
    78,   35,  25,   8,  7,  2,  1;
   588,  260, 126,  40, 20,  6,  4, 0;
  8047, 2934, 968, 263, 92, 25, 13, 3, 1;
  ...
		

Crossrefs

Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
    T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
    my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021

Formula

Column-wise partial sums of A327372.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019

A327370 Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).

Original entry on oeis.org

0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

Graphs consist of zero or more paths on two nodes each and either a single isolated node or a star with two or more peripheral nodes. - Andrew Howroyd, Sep 05 2019

Examples

			The a(4) = 4 edge-sets:
  {12,13,14}
  {12,23,24}
  {13,23,34}
  {14,24,34}
		

Crossrefs

Column k = n - 1 of A327369.
The unlabeled version is A028242.

Programs

  • Maple
    f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 06 2019
  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==n-1&]],{n,0,5}]
    With[{nn=30},CoefficientList[Series[x Exp[x^2/2](Exp[x]-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019

Formula

E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 23, 31, 9, 1, 0, 256, 515, 227, 25, 1, 0, 5319, 15381, 10210, 1782, 75, 1, 0, 209868, 834491, 815867, 221130, 15564, 231, 1, 0, 15912975, 83016613, 116035801, 47818683, 5499165, 151455, 763, 1, 0, 2343052576, 15330074139, 29550173053, 18044889597, 3291232419, 158416629, 1635703, 2619, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - Andrew Howroyd, Mar 09 2020

Examples

			Triangle begins:
     1
     1     0
     1     1     0
     4     3     1     0
    23    31     9     1     0
   256   515   227    25     1     0
  5319 15381 10210  1782    75     1     0
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A006129.
Row sums without the first two columns are A100743.
Column k = 0 is A327367(n > 0).
Column k = 1 is A327227.
The unlabeled version is A294217.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}]
  • PARI
    GraphsByMaxDegree(n)={
      local(M=Map(Mat([x^0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
      my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
      Mat(M);
    }
    Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 09 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 10, 12, 12, 4, 3, 253, 260, 160, 60, 35, 0, 12068, 9150, 4230, 1440, 480, 66, 15, 1052793, 570906, 195048, 53200, 12600, 2310, 427, 0, 169505868, 63523656, 15600032, 3197040, 585620, 95088, 14056, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A graph is covering if there are no isolated vertices.

Examples

			Triangle begins:
      1
      0     0
      0     0     1
      1     0     3     0
     10    12    12     4     3
    253   260   160    60    35     0
  12068  9150  4230  1440   480    66    15
		

Crossrefs

Row sums are A006129.
Column k = 0 is A100743.
Column k = n is A123023.
Row sums without the first column are A327227.
The non-covering version is A327369.
The unlabeled version is A327372.

Programs

  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise inverse binomial transform of A327369.
E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 05 2019

A277072 Number of n-node labeled graphs with one endpoint.

Original entry on oeis.org

0, 0, 0, 12, 320, 10890, 640836, 68362504, 13369203792, 4852623272670, 3314874720579180, 4318786169776866612, 10854838945689940034808, 53111101422881446287824390, 509319855642185873306564196780, 9619620856997967197817249800046480
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=1 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := z^2/(1-z)*(diff(XGF,z)-XGF):
    XS := series(K1, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m}];
    egf = (z^2/(1 - z))*(A'[z] - A[z]);
    a[n_] := SeriesCoefficient[egf, {z, 0, n}]*n!;
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (z^2/(1-z))*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0}(2^binomial(n, 2)*(z/exp(z))^n/n!).

A277073 Number of n-node labeled graphs with two endpoints.

Original entry on oeis.org

0, 1, 6, 30, 260, 5445, 228564, 17288852, 2327095296, 562985438805, 248555982382840, 203515251722217402, 313711170518065772088, 922107609498513821505577, 5221584862895700871908309960, 57411615463478726571189869693160, 1232855219250913685154581533108294112
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=2 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := 1/2*z^2/(1-z)*XGF:
    K2 := 1/2*z^4/(1-z)^2*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
    K3 := 1/2*z^3/(1-z)^3*(diff(XGF, z)-XGF):
    XS := series(K1+K2+K3, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m}];
    egf = (1/2)*(z^2/(1 - z))*A[z] + (1/2)*(z^4/(1 - z)^2)*(A''[z] - 2*A'[z] + A[z]) + (1/2)*(z^3/(1 - z)^3)*(A'[z] - A[z]);
    a[n_] := SeriesCoefficient[egf, {z, 0, n}]*n!;
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (1/2)*(z^2/(1-z))*A(z) + (1/2)*(z^4/(1-z)^2)*(A''(z)-2*A'(z)+A(z)) + (1/2)*(z^3/(1-z)^3)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2)*Sum_{n>=0} (2^binomial(n, 2)*(z/exp(z))^n/n!).

A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 6, 46, 655, 17991, 927416, 89009740, 16020407709, 5468601546685, 3578414666656214, 4529751815161579194, 11175105490563109463875, 54043272967471942825421219, 514566625051705610110588073460, 9677104749727084630538798805505880
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			The a(4) = 46 edge-sets:
  {12}  {12,13}  {12,13,14}  {12,13,14,23}
  {13}  {12,14}  {12,13,24}  {12,13,14,24}
  {14}  {12,23}  {12,13,34}  {12,13,14,34}
  {23}  {12,24}  {12,14,23}  {12,13,23,24}
  {24}  {13,14}  {12,14,34}  {12,13,23,34}
  {34}  {13,23}  {12,23,24}  {12,14,23,24}
        {13,34}  {12,23,34}  {12,14,24,34}
        {14,24}  {12,24,34}  {12,23,24,34}
        {14,34}  {13,14,23}  {13,14,23,34}
        {23,24}  {13,14,24}  {13,14,24,34}
        {23,34}  {13,23,24}  {13,23,24,34}
        {24,34}  {13,23,34}  {14,23,24,34}
                 {13,24,34}
                 {14,23,24}
                 {14,23,34}
                 {14,24,34}
		

Crossrefs

The covering case is A327362.
Graphs with endpoints are A245797.
Graphs with connected edge-set are A287689.
Connected graphs with bridges are A327071.
Covering graphs with endpoints are A327227.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Binomial transform of A327362.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019
Showing 1-10 of 13 results. Next