cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Examples

			Triangle begins:
      1
      1     0
      1     0     1
      2     0     6     0
     15    12    30     4     3
    314   320   260    80    50     0
  13757 10890  5445  1860   735    66    15
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A245797.
Column k = 0 is A059167.
Column k = 1 is A277072.
Column k = 2 is A277073.
Column k = 3 is A277074.
Column k = n is A123023.
Column k = n - 1 is A327370.
The unlabeled version is A327371.
The covering version is A327377.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A277073 Number of n-node labeled graphs with two endpoints.

Original entry on oeis.org

0, 1, 6, 30, 260, 5445, 228564, 17288852, 2327095296, 562985438805, 248555982382840, 203515251722217402, 313711170518065772088, 922107609498513821505577, 5221584862895700871908309960, 57411615463478726571189869693160, 1232855219250913685154581533108294112
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=2 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := 1/2*z^2/(1-z)*XGF:
    K2 := 1/2*z^4/(1-z)^2*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
    K3 := 1/2*z^3/(1-z)^3*(diff(XGF, z)-XGF):
    XS := series(K1+K2+K3, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m}];
    egf = (1/2)*(z^2/(1 - z))*A[z] + (1/2)*(z^4/(1 - z)^2)*(A''[z] - 2*A'[z] + A[z]) + (1/2)*(z^3/(1 - z)^3)*(A'[z] - A[z]);
    a[n_] := SeriesCoefficient[egf, {z, 0, n}]*n!;
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (1/2)*(z^2/(1-z))*A(z) + (1/2)*(z^4/(1-z)^2)*(A''(z)-2*A'(z)+A(z)) + (1/2)*(z^3/(1-z)^3)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2)*Sum_{n>=0} (2^binomial(n, 2)*(z/exp(z))^n/n!).

A277074 Number of n-node labeled graphs with three endpoints.

Original entry on oeis.org

0, 0, 0, 4, 80, 1860, 64680, 3666600, 354093264, 59372032440, 17572209206640, 9347625940951980, 9099961952914672840, 16480899322963497105684, 56311549004017312945310280, 367105988116570172056739960080
Offset: 1

Views

Author

Marko Riedel, Sep 27 2016

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 31, problem 1.16(a).

Crossrefs

Column k=3 of A327369.

Programs

  • Maple
    MX := 16:
    XGF := exp(z^2/2)*add((z/exp(z))^n*2^binomial(n,2)/n!, n=0..MX+5):
    K1 := 1/6*z^4/(1-z)^3*XGF:
    K2 := 1/2*z^4/(1-z)^2*(diff(XGF,z)-XGF):
    K3 := 1/6*z^6/(1-z)^3*(diff(XGF, z$3)-3*diff(XGF, z$2)+3*diff(XGF,z)-XGF):
    K4 := 1/2*z^5/(1-z)^4*(diff(XGF, z$2)-2*diff(XGF,z)+XGF):
    K5 := 1/6*z^4/(1-z)^4*(diff(XGF,z)-XGF):
    K6 := 1/2*z^5/(1-z)^5*(diff(XGF,z)-XGF):
    XS := series(K1+K2+K3+K4+K5+K6, z=0, MX+1):
    seq(n!*coeff(XS, z, n), n=1..MX);
  • Mathematica
    m = 16;
    A[z_] := Exp[1/2*z^2]*Sum[2^Binomial[n, 2]*(z/Exp[z])^n/n!, {n, 0, m+1}];
    egf = (1/6)*(z^4/(1-z)^3)*A[z] + (1/2)*(z^4/(1-z)^2)*(A'[z] - A[z]) + (1/6)*(z^6/(1-z)^3)*(A'''[z] - 3*A''[z] + 3*A'[z] - A[z]) + (1/2)*(z^5/(1 - z)^4)*(A''[z] - 2*A'[z] + A[z]) + (1/6)*(z^4/(1-z)^4)*(A'[z] - A[z]) + (1/2)*(z^5/(1-z)^5)*(A'[z] - A[z]); s = egf + O[z]^(m+1);
    a[n_] := n!*SeriesCoefficient[s, n];
    Array[a, m] (* Jean-François Alcover, Feb 23 2019 *)

Formula

E.g.f.: (1/6)*(z^4/(1-z)^3)*A(z) + (1/2)*(z^4/(1-z)^2)*(A'(z)-A(z)) + (1/6)*(z^6/(1-z)^3)*(A'''(z)-3*A''(z)+3*A'(z)-A(z)) + (1/2)*(z^5/(1-z)^4)*(A''(z)-2*A'(z)+A(z)) + (1/6)*(z^4/(1-z)^4)*(A'(z)-A(z)) + (1/2)*(z^5/(1-z)^5)*(A'(z)-A(z)) where A(z) = exp(1/2*z^2) * Sum_{n>=0} 2^binomial(n, 2)*(z/exp(z))^n/n!.

A325115 Number of simple graphs on n unlabeled nodes with exactly 1 endpoint (node of degree 1).

Original entry on oeis.org

0, 0, 0, 1, 6, 35, 260, 2934, 53768, 1707627, 96648020, 9886429142, 1842161884708, 629505254017556, 397043155634566696, 464930596621838689900, 1016021072554513545893264, 4162479064042009639168386134, 32096876145378032622994745784856
Offset: 1

Views

Author

Andrew Howroyd, Sep 04 2019

Keywords

Crossrefs

Column k=1 of A327371.
Cf. A277072 (labeled case), A325125.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 02 2021
Showing 1-4 of 4 results.