A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
1, 1, 0, 1, 0, 1, 2, 0, 6, 0, 15, 12, 30, 4, 3, 314, 320, 260, 80, 50, 0, 13757, 10890, 5445, 1860, 735, 66, 15, 1142968, 640836, 228564, 64680, 16800, 2772, 532, 0, 178281041, 68362504, 17288852, 3666600, 702030, 115416, 17892, 1016, 105
Offset: 0
Examples
Triangle begins: 1 1 0 1 0 1 2 0 6 0 15 12 30 4 3 314 320 260 80 50 0 13757 10890 5445 1860 735 66 15
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
-
PARI
Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167. my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n)); my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n)); my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))); my(A=exp(x + U + subst(B-x, x, x*(1-y) + R))); Vecrev(n!*polcoef(A, n), n + 1); } { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019
Formula
Column-wise binomial transform of A327377.
E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019
Extensions
Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019