A103523 Concatenations of pairs of primes that differ by 100.
3103, 7107, 13113, 31131, 37137, 67167, 73173, 79179, 97197, 127227, 139239, 151251, 157257, 163263, 181281, 193293, 211311, 283383, 331431, 349449, 367467, 379479, 409509, 421521, 457557, 463563, 487587, 499599, 541641, 547647, 577677
Offset: 1
Examples
9191019 is in this sequence because 919 is prime, 919+100 = 1019 is prime and 9191019 is the concatenation of those two primes differing by 100.
Links
- Robert Israel, Table of n, a(n) for n = 1..9832
Programs
-
Maple
f:= proc(n) if isprime(n) and isprime(n+100) then 10^(1+ilog10(n+100))*n+n+100 fi end proc: map(f, [3,seq(i,i=7..1000,6)]); # Robert Israel, Dec 07 2015
-
Mathematica
FromDigits[Join@@IntegerDigits/@{#,#+100}]&/@Select[Prime@Range@200,PrimeQ[#+100]&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
-
Python
from sympy import isprime, primerange as prange def auptop(lim): return [int(str(p)+str(p+100)) for p in prange(2, lim+1) if isprime(p+100)] print(auptop(577)) # Michael S. Branicky, Jul 04 2021
Formula
List: concatenate(p, p+100) iff p and p+100 are primes.
Comments