A100762 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n and let P(n) = A100549(n); then a(n) = Product_{ q <= P(n) } q^e_q; a(1) = 1 by convention.
1, 2, 1, 4, 1, 2, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 27, 4, 1, 2, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 72, 1, 2, 3, 4, 1, 2, 1, 80, 81, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Maple
# First load the procedure pp from A100549 # B = prod_{p <= pp(n)} p^e_p B := proc(n) local v,f,pv; global pp; option remember; pv := pp(n); v := 1: for f in op(2..-1,ifactors(n)) while f[1] <= pv do v := v * f[1]^f[2]; end do; return v; end proc;
-
Mathematica
{1}~Join~Array[Function[{q, P}, Times @@ Power @@@ Select[q, First@# <= P &]] @@ {#, Prime@ PrimePi[1 + Max@ #[[All, -1]] ]} &@ FactorInteger[#] &, 96, 2] (* Michael De Vlieger, Nov 13 2018 *)
-
PARI
A100549(n) = if(1==n,1,prime(primepi(1+vecmax(factor(n)[,2])))); A100762(n) = if(1==n,1,my(u = A100549(n), f=factor(n)); prod(i=1, #f~, if(f[i, 1]<=u, f[i, 1]^f[i, 2], 1))); \\ Antti Karttunen, Nov 11 2018