cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100762 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n and let P(n) = A100549(n); then a(n) = Product_{ q <= P(n) } q^e_q; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 27, 4, 1, 2, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 72, 1, 2, 3, 4, 1, 2, 1, 80, 81, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Crossrefs

Programs

  • Maple
    # First load the procedure pp from A100549
    # B = prod_{p <= pp(n)} p^e_p
    B := proc(n) local v,f,pv; global pp; option remember;
    pv := pp(n);
    v := 1:
    for f in op(2..-1,ifactors(n)) while f[1] <= pv do
    v := v * f[1]^f[2];
    end do;
    return v;
    end proc;
  • Mathematica
    {1}~Join~Array[Function[{q, P}, Times @@ Power @@@ Select[q, First@# <= P &]] @@ {#, Prime@ PrimePi[1 + Max@ #[[All, -1]] ]} &@ FactorInteger[#] &, 96, 2] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    A100549(n) = if(1==n,1,prime(primepi(1+vecmax(factor(n)[,2]))));
    A100762(n) = if(1==n,1,my(u = A100549(n), f=factor(n)); prod(i=1, #f~, if(f[i, 1]<=u, f[i, 1]^f[i, 2], 1))); \\ Antti Karttunen, Nov 11 2018