cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A082725 a(n) = n/A100762(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 1, 5, 11, 1, 13, 7, 15, 1, 17, 1, 19, 5, 21, 11, 23, 1, 25, 13, 1, 7, 29, 15, 31, 1, 33, 17, 35, 1, 37, 19, 39, 5, 41, 21, 43, 11, 5, 23, 47, 1, 49, 25, 51, 13, 53, 1, 55, 7, 57, 29, 59, 5, 61, 31, 7, 1, 65, 33, 67, 17, 69, 35, 71, 1, 73, 37, 25, 19, 77, 39, 79, 1, 1, 41
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2008

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Table[Function[{q, P}, n/Times @@ Power @@@ Select[q, First@ # <= P &]] @@ {#, Prime@ PrimePi[1 + Max@ #[[All, -1]] ]} &@ FactorInteger[n], {n, 2, 82}] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    A100549(n) = if(1==n,1,prime(primepi(1+vecmax(factor(n)[,2]))));
    A100762(n) = if(1==n,1,my(u = A100549(n), f=factor(n)); prod(i=1, #f~, if(f[i, 1]<=u, f[i, 1]^f[i, 2], 1)));
    A082725(n) = (n/A100762(n)); \\ Antti Karttunen, Nov 11 2018

A100417 Numbers n such that P(n) = P(B(n)), where P() = A100549() and B() = A100762.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120, 122, 124, 126
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Crossrefs

Programs

  • Maple
    # First load the Maple programs from A100549 and A100762
    # Bgood = (is pp(n) = pp(B(n))), that is, is B(n) enough to establish pp(n)?
    Bgood := proc(n) global pp;
    `if`(pp(B(n))=pp(n),true,false);
    end proc;
    select(Bgood, [$1..200]);

A141758 Elements n of A141586 with property that A100762(n) = n.

Original entry on oeis.org

1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 4320, 6720, 13440, 20160, 21600, 40320, 60480, 64800, 120960, 194400, 241920, 302400, 423360, 483840, 604800, 846720, 907200, 1814400, 2721600, 3628800, 5443200, 6350400, 7257600, 10644480, 10886400, 12700800, 18144000
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 16 2008

Keywords

A100786 Apply the function n -> A100762(n) to the terms of A141586.

Original entry on oeis.org

1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 480, 4320, 480, 480, 6720, 480, 480, 1440, 480, 13440, 480, 480, 1440, 480, 1440, 480, 20160, 480, 21600, 480, 1440, 480, 1440, 480, 480, 480, 1440, 480, 480, 480, 480, 40320, 1440, 480, 1440, 480, 480, 480, 480, 480, 1440
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

A141586 Strongly refactorable numbers: numbers n such that if n is divisible by d, it is divisible by the number of divisors of d.

Original entry on oeis.org

1, 2, 12, 24, 36, 72, 240, 480, 720, 1440, 3360, 4320, 5280, 6240, 6720, 8160, 9120, 10080, 11040, 13440, 13920, 14880, 15840, 17760, 18720, 19680, 20160, 20640, 21600, 22560, 24480, 25440, 27360, 28320, 29280, 32160, 33120, 34080
Offset: 1

Views

Author

J. Lowell, Aug 19 2008

Keywords

Comments

Let n = Product_{p} p ^ e_p be the prime factorization of n and let M = max{e_p + 1 }. Then n is in the sequence iff for all primes q in the range 2 <= q <= M we have e_q >= Sum_{r} floor( log_q (e_r + 1) ). - N. J. A. Sloane, Sep 01 2008
All terms > 1 are even. A subsequence of A033950. - N. J. A. Sloane, Aug 27 2008
Contains 480*p for all primes p > 5 (see A109802). - N. J. A. Sloane, Aug 27 2008

Examples

			72 qualifies because its divisors are 1,2,3,4,6,8,9,12,18,24,36,72, which have 1,2,2,3,4,4,3,6,6,8,9,12 divisors respectively and all of those numbers are divisors of 72.
		

References

  • Dmitriy Kunisky, German Manoim and N. J. A. Sloane, On strongly refactorable numbers, in preparation.

Crossrefs

Programs

  • Maple
    isA141586 := proc(n) local dvs,d ; dvs := numtheory[divisors](n) ; for d in dvs do if not numtheory[tau](d) in dvs then RETURN(false) : fi; od: RETURN(true) ; end: for n from 1 to 100000 do if isA141586(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Aug 26 2008
    ## A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
    with(numtheory):
    pp := proc(n) local f,m; option remember; if (n = 1) then return 1; end if; m := 1: for f in op(2..-1,ifactors(n)) do if (f[2] > m) then m := f[2]: end if; end do; prevprime(m+2); end proc;
    isA141586 := proc(n) local ff,f,g,p,i; global pp;
    ff := op(2..-1,ifactors(n));
    for f in ff do
    p := f[1];
    if (add(floor(log(1+g[2])/log(p)),g in ff) > f[2]) then
    return false;
    end if;
    end do;
    for i from 1 to pi(pp(n)) do
    p := ithprime(i);
    if (n mod p <> 0) then
    if (add(floor(log(1+g[2])/log(p)),g in ff) > 0) then
    return false;
    end if;
    end if;
    end do;
    return true;
    end proc; # David Applegate and N. J. A. Sloane, Sep 15 2008
  • Mathematica
    l = {}; For[n = 1, n < 100000, n++, b = DivisorSigma[0, Divisors[n]]; If[Length[Select[b, Mod[n, # ] > 0 &]] == 0, AppendTo[l, n]]]; l (* Stefan Steinerberger, Aug 25 2008 *)
    sfnQ[n_]:=AllTrue[DivisorSigma[0,Divisors[n]],Mod[n,#]==0&]; Select[ Range[ 35000],sfnQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 27 2019 *)
  • PARI
    is_A141586(n)={ bittest(n,0) & return(n==1); fordiv(n,d,n % numdiv(d) & return);1 } \\ M. F. Hasler, Dec 05 2010
    
  • Sage
    is_A141586 = lambda n: all(number_of_divisors(d).divides(n) for d in divisors(n)) # D. S. McNeil, Dec 05 2010

Extensions

More terms from German Manoim (gerrymanoim(AT)gmail.com), Aug 27 2008

A100549 Let n = 2^e_2 * 3^e_ * 5^e_ * ... be the prime factorization of n; then a(n) = largest prime <= 1 + max{e_2, e_3, e_5, ...}; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 3, 2
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Examples

			If n = 8 = 2^3, a(n) = (largest prime <= 3+1) = 3.
If n = 480 = 2^5*3*5, a(n) = (largest prime <= 1 + max{5,1,1}) = 5.
		

Crossrefs

Programs

  • Maple
    # if n = prod_p p^e_p, then
    # pp = largest prime <= 1 + max e_p
    with(numtheory):
    pp := proc(n) local f,m; option remember;
    if (n = 1) then
    return 1;
    end if;
    m := 1:
    for f in op(2..-1,ifactors(n)) do
    if (f[2] > m) then
    m := f[2]:
    end if;
    end do;
    prevprime(m+2);
    end proc;
  • Mathematica
    {1}~Join~Array[Prime@PrimePi[1 + Max@FactorInteger[#][[All, -1]]] &, 105, 2] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    a(n) = if (n==1, 1, precprime(1 + vecmax(factor(n)[,2]~))); \\ Michel Marcus, Nov 14 2018

A141757 Even terms in A100933.

Original entry on oeis.org

50, 98, 150, 242, 250, 294, 338, 350, 490, 550, 578, 650, 686, 722, 726, 750, 850, 950, 1014, 1050, 1058, 1078, 1150, 1210, 1274, 1450, 1470, 1550, 1650, 1666, 1682, 1690, 1694, 1734, 1750, 1850, 1862, 1922, 1950, 2050, 2058, 2150, 2166, 2254, 2350, 2366
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Programs

  • Maple
    with(numtheory):
    # For A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
    pp := proc(n) local f,m; option remember;
    if (n = 1) then
    return 1;
    end if;
    m := 1:
    for f in op(2..-1,ifactors(n)) do
    if (f[2] > m) then
    m := f[2]:
    end if;
    end do;
    prevprime(m+2);
    end proc;
    # For A100762: B = prod_{p <= pp(n)} p^e_p
    B := proc(n) local v,f,pv; global pp; option remember;
    pv := pp(n);
    v := 1:
    for f in op(2..-1,ifactors(n)) while f[1] <= pv do
    v := v * f[1]^f[2];
    end do;
    return v;
    end proc;
    # For A100417: Bgood = (is pp(n) = pp(B(n))), that is, is B(n) enough to establish pp(n)?
    Bgood := proc(n) global pp;
    `if`(pp(B(n))=pp(n),true,false);
    end proc;
    # For A100933 and A141757:
    t0:=select(not Bgood, [$1..3000]);
    t1:=[];
    for n from 1 to nops(t0) do
    if t0[n] mod 2 = 0 then t1:=[op(t1),t0[n]]; fi; od: t1;
Showing 1-7 of 7 results.