cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A100933 Complement of A100417.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 50, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 98, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131, 133, 137, 139, 141, 143, 145
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Crossrefs

A100762 Let n = 2^e_2 * 3^e_3 * 5^e_5 * ... be the prime factorization of n and let P(n) = A100549(n); then a(n) = Product_{ q <= P(n) } q^e_q; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 9, 2, 1, 12, 1, 2, 1, 16, 1, 18, 1, 4, 1, 2, 1, 24, 1, 2, 27, 4, 1, 2, 1, 32, 1, 2, 1, 36, 1, 2, 1, 8, 1, 2, 1, 4, 9, 2, 1, 48, 1, 2, 1, 4, 1, 54, 1, 8, 1, 2, 1, 12, 1, 2, 9, 64, 1, 2, 1, 4, 1, 2, 1, 72, 1, 2, 3, 4, 1, 2, 1, 80, 81, 2, 1, 12, 1, 2, 1, 8, 1, 18, 1, 4, 1, 2, 1, 96, 1
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Crossrefs

Programs

  • Maple
    # First load the procedure pp from A100549
    # B = prod_{p <= pp(n)} p^e_p
    B := proc(n) local v,f,pv; global pp; option remember;
    pv := pp(n);
    v := 1:
    for f in op(2..-1,ifactors(n)) while f[1] <= pv do
    v := v * f[1]^f[2];
    end do;
    return v;
    end proc;
  • Mathematica
    {1}~Join~Array[Function[{q, P}, Times @@ Power @@@ Select[q, First@# <= P &]] @@ {#, Prime@ PrimePi[1 + Max@ #[[All, -1]] ]} &@ FactorInteger[#] &, 96, 2] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    A100549(n) = if(1==n,1,prime(primepi(1+vecmax(factor(n)[,2]))));
    A100762(n) = if(1==n,1,my(u = A100549(n), f=factor(n)); prod(i=1, #f~, if(f[i, 1]<=u, f[i, 1]^f[i, 2], 1))); \\ Antti Karttunen, Nov 11 2018

A100549 Let n = 2^e_2 * 3^e_ * 5^e_ * ... be the prime factorization of n; then a(n) = largest prime <= 1 + max{e_2, e_3, e_5, ...}; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 3, 3, 2, 3, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 3, 2
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Examples

			If n = 8 = 2^3, a(n) = (largest prime <= 3+1) = 3.
If n = 480 = 2^5*3*5, a(n) = (largest prime <= 1 + max{5,1,1}) = 5.
		

Crossrefs

Programs

  • Maple
    # if n = prod_p p^e_p, then
    # pp = largest prime <= 1 + max e_p
    with(numtheory):
    pp := proc(n) local f,m; option remember;
    if (n = 1) then
    return 1;
    end if;
    m := 1:
    for f in op(2..-1,ifactors(n)) do
    if (f[2] > m) then
    m := f[2]:
    end if;
    end do;
    prevprime(m+2);
    end proc;
  • Mathematica
    {1}~Join~Array[Prime@PrimePi[1 + Max@FactorInteger[#][[All, -1]]] &, 105, 2] (* Michael De Vlieger, Nov 13 2018 *)
  • PARI
    a(n) = if (n==1, 1, precprime(1 + vecmax(factor(n)[,2]~))); \\ Michel Marcus, Nov 14 2018

A141757 Even terms in A100933.

Original entry on oeis.org

50, 98, 150, 242, 250, 294, 338, 350, 490, 550, 578, 650, 686, 722, 726, 750, 850, 950, 1014, 1050, 1058, 1078, 1150, 1210, 1274, 1450, 1470, 1550, 1650, 1666, 1682, 1690, 1694, 1734, 1750, 1850, 1862, 1922, 1950, 2050, 2058, 2150, 2166, 2254, 2350, 2366
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Sep 15 2008

Keywords

Programs

  • Maple
    with(numtheory):
    # For A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
    pp := proc(n) local f,m; option remember;
    if (n = 1) then
    return 1;
    end if;
    m := 1:
    for f in op(2..-1,ifactors(n)) do
    if (f[2] > m) then
    m := f[2]:
    end if;
    end do;
    prevprime(m+2);
    end proc;
    # For A100762: B = prod_{p <= pp(n)} p^e_p
    B := proc(n) local v,f,pv; global pp; option remember;
    pv := pp(n);
    v := 1:
    for f in op(2..-1,ifactors(n)) while f[1] <= pv do
    v := v * f[1]^f[2];
    end do;
    return v;
    end proc;
    # For A100417: Bgood = (is pp(n) = pp(B(n))), that is, is B(n) enough to establish pp(n)?
    Bgood := proc(n) global pp;
    `if`(pp(B(n))=pp(n),true,false);
    end proc;
    # For A100933 and A141757:
    t0:=select(not Bgood, [$1..3000]);
    t1:=[];
    for n from 1 to nops(t0) do
    if t0[n] mod 2 = 0 then t1:=[op(t1),t0[n]]; fi; od: t1;
Showing 1-4 of 4 results.