A141757 Even terms in A100933.
50, 98, 150, 242, 250, 294, 338, 350, 490, 550, 578, 650, 686, 722, 726, 750, 850, 950, 1014, 1050, 1058, 1078, 1150, 1210, 1274, 1450, 1470, 1550, 1650, 1666, 1682, 1690, 1694, 1734, 1750, 1850, 1862, 1922, 1950, 2050, 2058, 2150, 2166, 2254, 2350, 2366
Offset: 1
Keywords
Programs
-
Maple
with(numtheory): # For A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p pp := proc(n) local f,m; option remember; if (n = 1) then return 1; end if; m := 1: for f in op(2..-1,ifactors(n)) do if (f[2] > m) then m := f[2]: end if; end do; prevprime(m+2); end proc; # For A100762: B = prod_{p <= pp(n)} p^e_p B := proc(n) local v,f,pv; global pp; option remember; pv := pp(n); v := 1: for f in op(2..-1,ifactors(n)) while f[1] <= pv do v := v * f[1]^f[2]; end do; return v; end proc; # For A100417: Bgood = (is pp(n) = pp(B(n))), that is, is B(n) enough to establish pp(n)? Bgood := proc(n) global pp; `if`(pp(B(n))=pp(n),true,false); end proc; # For A100933 and A141757: t0:=select(not Bgood, [$1..3000]); t1:=[]; for n from 1 to nops(t0) do if t0[n] mod 2 = 0 then t1:=[op(t1),t0[n]]; fi; od: t1;
Comments