cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A106607 Expansion of (1+t^3)^2/((1-t)*(1-t^2)^2*(1-t^4)).

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 20, 28, 39, 51, 67, 85, 107, 131, 160, 192, 229, 269, 315, 365, 421, 481, 548, 620, 699, 783, 875, 973, 1079, 1191, 1312, 1440, 1577, 1721, 1875, 2037, 2209, 2389, 2580, 2780, 2991, 3211, 3443, 3685, 3939, 4203, 4480, 4768, 5069, 5381, 5707, 6045
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2005

Keywords

Comments

Molien series for 5-dimensional group of order 8.
For of each of the quadrisections the n-th term is a polynomial in n of degree 3. - Ralf Stephan, Nov 16 2010
Number of non-isomorphic 3 X 3 nonnegative integer matrices with all row and column sums equal to n up to permutations of rows and columns. - Andrew Howroyd, Apr 08 2020
Take the square spiral on the square grid, with cells on the spiral numbered starting at 1. Every time the spiral crosses the x- or y-axis, calculate the sum of the numbers on the intersection of the spiral and the axis. This produces the present sequence (see illustration). - Karl-Heinz Hofmann, Aug 14 2022

Examples

			The a(4) = 9 symmetric matrices are:
  [0 0 4]  [0 1 3]  [0 1 3]  [0 2 2]  [0 2 2]
  [0 4 0]  [1 2 1]  [1 3 0]  [2 0 2]  [2 1 1]
  [4 0 0]  [3 1 0]  [3 0 1]  [2 2 0]  [2 1 1]
.
  [1 1 2]  [1 0 3]  [1 1 2]  [2 0 2]
  [1 2 1]  [0 4 0]  [1 3 0]  [0 4 0]
  [2 1 1]  [3 0 1]  [2 0 2]  [2 0 2]
		

Crossrefs

Row n=3 of A333737.
Cf. A100779.

Programs

  • Maple
    (1+t^3)^2/((1-t)*(1-t^2)^2*(1-t^4));
    seq(coeff(series(%,t,n+1), t,n), n=0..60);
  • Mathematica
    LinearRecurrence[{3,-3,1,1,-3,3,-1}, {1,1,3,5,9,13,20}, 61] (* G. C. Greubel, Sep 08 2021 *)
  • PARI
    a(n) = i=I; (4*n^3+18*n^2+56*n+3*(9*(-1)^n+(2-2*i)*(-i)^n+(2+2*i)*i^n+19))/96 \\ Colin Barker, Feb 08 2016
    
  • Sage
    def A106607_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^3)^2/((1-x)*(1-x^2)^2*(1-x^4)) ).list()
    A106607_list(60) # G. C. Greubel, Sep 08 2021

Formula

G.f.: (1-x+x^2)^2/( (1+x)*(1+x^2)*(1-x)^4 ). - R. J. Mathar, Dec 18 2014
a(n) = (4*n^3 +18*n^2 +56*n +3*(9*(-1)^n +2*(1-i)*(-i)^n +2*(1+i)*i^n +19))/96 where i is the imaginary unit. - Colin Barker, Feb 08 2016
E.g.f.: (1/48)*(6*(cos(x) - sin(x)) + p(x)*sinh(x) + (27 + p(x))*cosh(x)), where p(x) = 15 + 39*x + 15*x^2 + 2*x^3. - G. C. Greubel, Sep 08 2021
Showing 1-1 of 1 results.