A106607 Expansion of (1+t^3)^2/((1-t)*(1-t^2)^2*(1-t^4)).
1, 1, 3, 5, 9, 13, 20, 28, 39, 51, 67, 85, 107, 131, 160, 192, 229, 269, 315, 365, 421, 481, 548, 620, 699, 783, 875, 973, 1079, 1191, 1312, 1440, 1577, 1721, 1875, 2037, 2209, 2389, 2580, 2780, 2991, 3211, 3443, 3685, 3939, 4203, 4480, 4768, 5069, 5381, 5707, 6045
Offset: 0
Examples
The a(4) = 9 symmetric matrices are: [0 0 4] [0 1 3] [0 1 3] [0 2 2] [0 2 2] [0 4 0] [1 2 1] [1 3 0] [2 0 2] [2 1 1] [4 0 0] [3 1 0] [3 0 1] [2 2 0] [2 1 1] . [1 1 2] [1 0 3] [1 1 2] [2 0 2] [1 2 1] [0 4 0] [1 3 0] [0 4 0] [2 1 1] [3 0 1] [2 0 2] [2 0 2]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. Ling and P. Solé, Type II Codes over F_4 + u F_4, European J. Combinatorics, 22 (2001), pp. 983-997.
- Karl-Heinz Hofmann, An alternative way to get the terms of A106607. Examples of a(1..18)
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
Programs
-
Maple
(1+t^3)^2/((1-t)*(1-t^2)^2*(1-t^4)); seq(coeff(series(%,t,n+1), t,n), n=0..60);
-
Mathematica
LinearRecurrence[{3,-3,1,1,-3,3,-1}, {1,1,3,5,9,13,20}, 61] (* G. C. Greubel, Sep 08 2021 *)
-
PARI
a(n) = i=I; (4*n^3+18*n^2+56*n+3*(9*(-1)^n+(2-2*i)*(-i)^n+(2+2*i)*i^n+19))/96 \\ Colin Barker, Feb 08 2016
-
Sage
def A106607_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^3)^2/((1-x)*(1-x^2)^2*(1-x^4)) ).list() A106607_list(60) # G. C. Greubel, Sep 08 2021
Formula
G.f.: (1-x+x^2)^2/( (1+x)*(1+x^2)*(1-x)^4 ). - R. J. Mathar, Dec 18 2014
a(n) = (4*n^3 +18*n^2 +56*n +3*(9*(-1)^n +2*(1-i)*(-i)^n +2*(1+i)*i^n +19))/96 where i is the imaginary unit. - Colin Barker, Feb 08 2016
E.g.f.: (1/48)*(6*(cos(x) - sin(x)) + p(x)*sinh(x) + (27 + p(x))*cosh(x)), where p(x) = 15 + 39*x + 15*x^2 + 2*x^3. - G. C. Greubel, Sep 08 2021
Comments