cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333737 Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k up to permutations of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 1, 3, 9, 12, 7, 1, 1, 1, 1, 4, 13, 33, 29, 11, 1, 1, 1, 1, 4, 20, 74, 142, 79, 15, 1, 1, 1, 1, 5, 28, 163, 556, 742, 225, 22, 1, 1, 1, 1, 5, 39, 319, 1919, 5369, 4454, 677, 30, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 08 2020

Keywords

Comments

Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A188403. Burnside's lemma as applied in A318805 can be used to extend this method to the unlabeled case.

Examples

			Array begins:
==============================================
n\k | 0 1  2   3    4     5      6       7
----+-----------------------------------------
  0 | 1 1  1   1    1     1      1       1 ...
  1 | 1 1  1   1    1     1      1       1 ...
  2 | 1 1  2   2    3     3      4       4 ...
  3 | 1 1  3   5    9    13     20      28 ...
  4 | 1 1  5  12   33    74    163     319 ...
  5 | 1 1  7  29  142   556   1919    5793 ...
  6 | 1 1 11  79  742  5369  31781  156191 ...
  7 | 1 1 15 225 4454 64000 692599 5882230 ...
  ...
The T(3,3) = 5 matrices are:
   [0 0 3]  [0 1 2]  [0 1 2]  [1 0 2]  [1 1 1]
   [0 3 0]  [1 1 1]  [1 2 0]  [0 3 0]  [1 1 1]
   [3 0 0]  [2 1 0]  [2 0 1]  [2 0 1]  [1 1 1]
		

Crossrefs

Columns n=0..5 are A000012, A000012, A000041, A333888, A333889, A333890.
Main diagonal is A333738.
Cf. A188403 (labeled case), A333159 (binary), A333733 (not necessarily symmetric).

A100779 Expansion of (1+t^2+4*t^3+2*t^4+t^5+3*t^6)/((1-t)^2*(1-t^2)*(1-t^3)^2).

Original entry on oeis.org

1, 2, 5, 14, 27, 49, 89, 142, 218, 329, 469, 651, 892, 1183, 1542, 1989, 2514, 3138, 3886, 4745, 5741, 6902, 8214, 9706, 11411, 13312, 15443, 17840, 20485, 23415, 26671, 30232, 34140, 38439, 43107, 48189, 53734, 59717, 66188, 73199, 80724, 88816, 97532, 106843
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2005

Keywords

Comments

Molien series for 5-dimensional group of order 48.

Crossrefs

Cf. A106607.

Programs

  • Maple
    (1+t^2+4*t^3+2*t^4+t^5+3*t^6)/((1-t)^2*(1-t^2)*(1-t^3)^2);
    seq(coeff(series(%,t,n+1),t,n), n=0..50);

A355759 Sums of the first ceiling((n+1)/2) entries on the diagonals of a square spiral with a starting value of 1 in the center, where the diagonal and the antidiagonal are used alternately.

Original entry on oeis.org

1, 4, 6, 11, 15, 24, 32, 45, 57, 76, 94, 119, 143, 176, 208, 249, 289, 340, 390, 451, 511, 584, 656, 741, 825, 924, 1022, 1135, 1247, 1376, 1504, 1649, 1793, 1956, 2118, 2299, 2479, 2680, 2880, 3101, 3321, 3564, 3806, 4071, 4335, 4624, 4912, 5225, 5537, 5876, 6214, 6579, 6943
Offset: 1

Views

Author

Karl-Heinz Hofmann, Aug 14 2022

Keywords

Examples

			See the PDF in links.
		

Crossrefs

Cf. A006527 and A208995 (bisections, see formulas).

Programs

  • Mathematica
    CoefficientList[Series[-(x^7 - 2*x^6 + x^4 - x^3 + 2*x^2 - 2*x - 1)/((x - 1)^4*(x + 1)^2*(x^2 + 1)), {x, 0, 50}], x] (* Amiram Eldar, Aug 19 2022 *)
  • PARI
    a(n) = (n^2 + 6*n + if(n%2,17,20))*n \ 24 + (n%4!=1); \\ Kevin Ryde, Aug 19 2022
  • Python
    def A355759(n):  # polynomial way.
        if   n % 2 == 0: return((24 + 20*n + 6*n**2 + n**3)//24)
        elif n % 4 == 3: return((12 + 17*n + 6*n**2 + n**3)//24)
        elif n % 4 == 1: return((     17*n + 6*n**2 + n**3)//24)
    

Formula

G.f.: -(x^7 - 2*x^6 + x^4 - x^3 + 2*x^2 - 2*x-1)/((x - 1)^4 * (x + 1)^2 * (x^2 +1)).
a(n) = (24 + 20*n + 6*n^2 + n^3) / 24 for n even.
a(n) = (12 + 17*n + 6*n^2 + n^3) / 24 for n odd and n (mod 4) == 3.
a(n) = (17*n + 6*n^2 + n^3) / 24 for n odd and n (mod 4) == 1.
a(2*n) = A006527(n+1).
a(2*n-1) = A208995(n) - 1.
E.g.f.: ((30 + 45*x + 12*x^2 + x^3)*cosh(x) + (51 + 42*x + 12*x^2 + x^3)*sinh(x) - 6*cos(x))/24. - Stefano Spezia, Aug 19 2022
Showing 1-3 of 3 results.