cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100828 Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)).

Original entry on oeis.org

1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201
Offset: 0

Views

Author

Creighton Dement, Jan 06 2005; revised Aug 22 2005

Keywords

Comments

A floretion-generated sequence relating NSW and Pell numbers.
Elements of odd index in the sequence gives A002315. a(n+2) - a(n) = A002203(n+2).
Floretion Algebra Multiplication Program, FAMP Code: 2tesseq[B*C} with B = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and C = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • PARI
    Vec((1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Apr 29 2019

Formula

a(n) = (u^(n+1)+1)*(v^(n+1)+1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
From Colin Barker, Apr 29 2019: (Start)
G.f.: (1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)).
a(n) = (1 + (-1)^(1+n) + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n)) / 2.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3.
(End)