A100828 Expansion of (1+2*x-2*x^3-3*x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
1, 4, 7, 18, 41, 100, 239, 578, 1393, 3364, 8119, 19602, 47321, 114244, 275807, 665858, 1607521, 3880900, 9369319, 22619538, 54608393, 131836324, 318281039, 768398402, 1855077841, 4478554084, 10812186007, 26102926098, 63018038201
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Robert Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (2,2,-2,-1).
Programs
-
PARI
Vec((1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Apr 29 2019
Formula
a(n) = (u^(n+1)+1)*(v^(n+1)+1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
From Colin Barker, Apr 29 2019: (Start)
G.f.: (1 + 2*x - 3*x^2 - 2*x^3) / ((1 - x)*(1 + x)*(1 - 2*x - x^2)).
a(n) = (1 + (-1)^(1+n) + (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n)) / 2.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3.
(End)
Comments