cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A113224 a(2n) = A002315(n), a(2n+1) = A082639(n+1).

Original entry on oeis.org

1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

From Paul D. Hanna, Oct 22 2005: (Start)
The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
Equals the self-convolution of integer sequence A113281. (End)
With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015
Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* Harvey P. Dale, Oct 10 2017 *)
  • Maxima
    a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* Vladimir Kruchinin, Apr 11 2011 */
    
  • PARI
    {a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ Paul D. Hanna
    

Formula

G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
a(n+2) - a(n+1) - a(n) = A100828(n+1).
a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011
a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011
a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013
From Peter Bala, Mar 19 2015: (Start)
a(n) = (1/2) * A129744(n+1).
exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = A105635(n-1) + A105635(n+1). - R. J. Mathar, Mar 23 2023

A114647 Expansion of (3 -4*x -3*x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

3, 2, 7, 12, 31, 70, 171, 408, 987, 2378, 5743, 13860, 33463, 80782, 195027, 470832, 1136691, 2744210, 6625111, 15994428, 38613967, 93222358, 225058683, 543339720, 1311738123, 3166815962, 7645370047, 18457556052, 44560482151, 107578520350, 259717522851
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[3,2,7,12]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[Fibonacci[n+1, 2] +1+(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((3-4*x-3*x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, May 26 2016
    
  • Sage
    [lucas_number1(n+1,2,-1) +(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (3 -4*x -3*x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(n) = A000129(n+1) + 2*A059841(n). - R. J. Mathar, Nov 10 2009
From Colin Barker, May 26 2016: (Start)
a(n) = 1 + (-1)^n + ((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3. (End)
a(n) = A000129(n+1) + 1 + (-1)^n. - G. C. Greubel, May 24 2021

A114688 Expansion of (1 +3*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 5, 11, 30, 71, 175, 421, 1020, 2461, 5945, 14351, 34650, 83651, 201955, 487561, 1177080, 2841721, 6860525, 16562771, 39986070, 96534911, 233055895, 562646701, 1358349300, 3279345301, 7917039905, 19113425111, 46143890130, 111401205371, 268946300875
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,5,11,30]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Maple
    Pell:= proc(n) option remember;
        if n<2 then n
      else 2*Pell(n-1) + Pell(n-2)
        fi; end:
    seq((10*Pell(n+1) -3*(1+(-1)^n))/4, n=0..40); # G. C. Greubel, May 24 2021
  • Mathematica
    CoefficientList[Series[(-1-3x+x^2)/((1-x)(x+1)(x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,2,-2,-1},{1,5,11,30},40] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    Vec((-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 26 2016
    
  • Sage
    [(10*lucas_number1(n+1,2,-1) -3*(1+(-1)^n))/4 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +3*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=5, a(2)=11, a(3)=30, a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4). - Harvey P. Dale, Dec 18 2012
a(n) = (-6 - 6*(-1)^n + 5*sqrt(2)*( (1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n) ))/8. - Colin Barker, May 26 2016
a(n) = (10*A000129(n+1) - 3*(1 + (-1)^n))/4. - G. C. Greubel, May 24 2021

A114689 Expansion of (1 +4*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 6, 13, 36, 85, 210, 505, 1224, 2953, 7134, 17221, 41580, 100381, 242346, 585073, 1412496, 3410065, 8232630, 19875325, 47983284, 115841893, 279667074, 675176041, 1630019160, 3935214361, 9500447886, 22936110133, 55372668156, 133681446445, 322735561050
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Elements of odd index give match to A075848: 2*n^2 + 9 is a square. Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,6,13,36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[3*Fibonacci[n+1, 2] -1-(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((-1-4*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, May 26 2016
    
  • Sage
    [3*lucas_number1(n+1,2,-1) -(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +4*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Colin Barker, May 26 2016: (Start)
a(n) = (-1 - (-1)^n) + 3*((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3.
(End)
a(n) = 3*A000129(n+1) - (1 + (-1)^n). - G. C. Greubel, May 24 2021

A114697 Expansion of (1+x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 3, 9, 22, 55, 133, 323, 780, 1885, 4551, 10989, 26530, 64051, 154633, 373319, 901272, 2175865, 5253003, 12681873, 30616750, 73915375, 178447501, 430810379, 1040068260, 2510946901, 6061962063, 14634871029, 35331704122, 85298279275, 205928262673
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: (- .5'j + .5'k - .5j' + .5k' + 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki')*('i + 'j + i').

Crossrefs

Programs

  • Mathematica
    Table[(3*LucasL[n, 2] +10*Fibonacci[n, 2] -3 +(-1)^n)/4, {n,0,30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((1+x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^40)) \\ Colin Barker, Jun 24 2015
    
  • Sage
    [(4*lucas_number1(n+2,2,-1) -2*lucas_number1(n+1,2,-1) -3 +(-1)^n)/4 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

a(n+2) - 2*a(n+1) + a(n) = A111955(n+2).
G.f.: (1+x+x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Raphie Frank, Oct 01 2012: (Start)
a(2*n) = A216134(2*n+1).
a(2*n+1) = A006452(2*n+3)-1.
Lim_{n->infinity} a(n+1)/a(n) = A014176. (End)
a(n) = (2*A078343(n+2) - A010694(n))/4. - R. J. Mathar, Oct 02 2012
From Colin Barker, May 26 2016: (Start)
a(n) = ( 2*(-3 +(-1)^n) + (6-5*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(6+5*sqrt(2)) )/8.
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) for n>3. (End)
a(n) = (3*A002203(n) + 10*A000129(n) - 3 + (-1)^n)/4. - G. C. Greubel, May 24 2021

A162484 a(1) = 2, a(2) = 8; a(n) = 2 a(n - 1) + a(n - 2) - 4*(n mod 2).

Original entry on oeis.org

2, 8, 14, 36, 82, 200, 478, 1156, 2786, 6728, 16238, 39204, 94642, 228488, 551614, 1331716, 3215042, 7761800, 18738638, 45239076, 109216786, 263672648, 636562078, 1536796804, 3710155682, 8957108168, 21624372014, 52205852196, 126036076402, 304278005000
Offset: 1

Views

Author

Sarah-Marie Belcastro, Jul 04 2009

Keywords

Comments

a(n) is the number of perfect matchings of an edge-labeled 2 X n toroidal grid graph, or equivalently the number of domino tilings of a 2 X n toroidal grid.

Examples

			a(3) = 2 a(2) + a(1) - 4*(3 mod 2) = 2*8 + 2 - 4 = 14.
		

Crossrefs

Cf. A000129.

Programs

  • Mathematica
    Fold[Append[#1, 2 #1[[#2 - 1]] + #1[[#2 - 2]] - 4 Mod[#2, 2]] &, {2, 8}, Range[3, 30]] (* or *)
    Rest@ CoefficientList[Series[-2 x (-1 - 2 x + 3 x^2 + 2 x^3)/((x - 1) (1 + x) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Michael De Vlieger, Dec 16 2017 *)
    LinearRecurrence[{2,2,-2,-1},{2,8,14,36},30] (* Harvey P. Dale, Aug 24 2018 *)

Formula

for n > 2, (1/2) ((1 + sqrt(2))^n (2 - (-2 + sqrt(2)) (-1 + sqrt(2))^(2 floor(n/2))) + (1 - sqrt(2))^n (2 + (1 + sqrt(2))^(2 floor(n/2)) (2 + sqrt(2)))) (from Mathematica's solution to the recurrence).
Pell(n) + Pell(n-2) + 2*((n-1) mod 2).
From R. J. Mathar, Jul 26 2009: (Start)
a(n)= 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) = 2*A100828(n-1).
G.f.: -2*x*(-1-2*x+3*x^2+2*x^3)/((x-1)*(1+x)*(x^2+2*x-1)).
(End)
a(n) = 1 + (-1)^n + (1-sqrt(2))^n + (1+sqrt(2))^n. - Colin Barker, Dec 16 2017

A114696 Expansion of (1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 6, 15, 40, 97, 238, 575, 1392, 3361, 8118, 19599, 47320, 114241, 275806, 665855, 1607520, 3880897, 9369318, 22619535, 54608392, 131836321, 318281038, 768398399, 1855077840, 4478554081, 10812186006, 26102926095, 63018038200, 152139002497, 367296043198
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Elements of odd index give match to A065113: Sum of the squares of the n-th and the (n+1)st triangular numbers (A000217) is a perfect square.
Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Maple
    Q:= proc(n) option remember; # Q=A002203
        if n<2 then 2
      else 2*Q(n-1) + Q(n-2)
        fi; end:
    seq((Q(n+2) -3 -(-1)^n)/2, n=0..40); # G. C. Greubel, May 24 2021
  • Mathematica
    CoefficientList[Series[(1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)), {x,0,30}], x] (* or *) LinearRecurrence[{2,2,-2,-1}, {1,6,15,40}, 30] (* Harvey P. Dale, Jan 23 2014 *)
  • PARI
    Vec((1+4*x+x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^30)) \\ Colin Barker, May 26 2016
    
  • Sage
    [(lucas_number2(n+2,2,-1) -3 -(-1)^n)/2 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +4*x +x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=6, a(2)=15, a(3)=40, a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Harvey P. Dale, Jan 23 2014
a(n) = (-3 - (-1)^n + (3-2*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(3+2*sqrt(2)))/2. - Colin Barker, May 26 2016
From G. C. Greubel, May 24 2021: (Start)
a(n) = 3*A000129(n+1) + A000129(n) - (3 + (-1)^n)/2.
a(n) = (1/2)*(A002203(n+2) - 3 - (-1)^n). (End)

A113225 a(2n) = A011900(n), a(2n+1) = A001109(n+1).

Original entry on oeis.org

1, 1, 3, 6, 15, 35, 85, 204, 493, 1189, 2871, 6930, 16731, 40391, 97513, 235416, 568345, 1372105, 3312555, 7997214, 19306983, 46611179, 112529341, 271669860, 655869061, 1583407981, 3822685023, 9228778026, 22280241075, 53789260175
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

References

  • C. Dement, Floretion Integer Sequences (work in progress).

Crossrefs

Programs

  • Maple
    seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # Zerinvary Lajos, Apr 20 2008
    with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Ceiling[Fibonacci[Range[20], 2]/2]
    Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
    CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
    LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
  • PARI
    {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* Michael Somos, Sep 09 2006 */

Formula

G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - Michael Somos, Sep 09 2006
G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
Diagonal sums of A119468. - Paul Barry, May 21 2006
a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - Eric W. Weisstein, Aug 01 2023
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Eric W. Weisstein, Aug 01 2023

A104683 Interlaces "2*n^2 - 1 is a square" with NSW numbers.

Original entry on oeis.org

1, 1, 5, 7, 29, 41, 169, 239, 985, 1393, 5741, 8119, 33461, 47321, 195025, 275807, 1136689, 1607521, 6625109, 9369319, 38613965, 54608393, 225058681, 318281039, 1311738121, 1855077841, 7645370045, 10812186007, 44560482149, 63018038201
Offset: 0

Views

Author

Creighton Dement, Apr 22 2005

Keywords

Comments

See A100828 for a similar case.
If the pair (1,1)=(x,y), iteration of x'=3*x+4*y and y'=2*x+3*y gives a new pair of integer satisfying Pell's equation x^2-2*y^2=-1. Example: 7^2-2*5^2=-1; 41^2-2*29^2=-1. [Vincenzo Librandi, Nov 13 2010]
Floretion Algebra Multiplication Program, FAMP Code: 1jesleftcycseq:['k + i' + j']

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 6, 0, -1}, {1, 1, 5, 7}, 30] (* Bruno Berselli, Apr 04 2012 *)
  • Maxima
    makelist(expand(((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2))), n, 0, 29); /* Bruno Berselli, Apr 04 2012 */

Formula

G.f.: (1+x-x^2+x^3)/((x^2+2*x-1)*(x^2-2*x-1)).
a(n) = ((1+2*sqrt(2)+(-1)^n)*(1+sqrt(2))^n-(1-2*sqrt(2)+(-1)^n)*(1-sqrt(2))^n)/(4*sqrt(2)). [Bruno Berselli, Apr 04 2012]

A111955 a(n) = A078343(n) + (-1)^n.

Original entry on oeis.org

0, 1, 4, 7, 20, 45, 112, 267, 648, 1561, 3772, 9103, 21980, 53061, 128104, 309267, 746640, 1802545, 4351732, 10506007, 25363748, 61233501, 147830752, 356895003, 861620760, 2080136521, 5021893804, 12123924127, 29269742060, 70663408245
Offset: 0

Views

Author

Creighton Dement, Aug 25 2005

Keywords

Comments

This sequence is a companion sequence to A111954 (compare formula / program code). Three other companion sequences (i.e., they are generated by the same floretion given in the program code) are A105635, A097076 and A100828.
Floretion Algebra Multiplication Program, FAMP Code: 4kbasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e. (an initial term 0 was added to the sequence)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{0,1,4},40] (* Harvey P. Dale, Mar 12 2015 *)

Formula

a(n) + a(n+1) = A048655(n).
a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3; a(n) = (-1/4*sqrt(2)+1)*(1-sqrt(2))^n + (1/4*sqrt(2)+1)*(1+sqrt(2))^n - (-1)^n;
G.f.: -x*(1+3*x) / ( (1+x)*(x^2+2*x-1) ). - R. J. Mathar, Oct 02 2012
E.g.f.: cosh(x) - exp(x)*cosh(sqrt(2)*x) - sinh(x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024
Showing 1-10 of 10 results.