cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A114647 Expansion of (3 -4*x -3*x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

3, 2, 7, 12, 31, 70, 171, 408, 987, 2378, 5743, 13860, 33463, 80782, 195027, 470832, 1136691, 2744210, 6625111, 15994428, 38613967, 93222358, 225058683, 543339720, 1311738123, 3166815962, 7645370047, 18457556052, 44560482151, 107578520350, 259717522851
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[3,2,7,12]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[Fibonacci[n+1, 2] +1+(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((3-4*x-3*x^2)/((1-x^2)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, May 26 2016
    
  • Sage
    [lucas_number1(n+1,2,-1) +(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (3 -4*x -3*x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(n) = A000129(n+1) + 2*A059841(n). - R. J. Mathar, Nov 10 2009
From Colin Barker, May 26 2016: (Start)
a(n) = 1 + (-1)^n + ((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3. (End)
a(n) = A000129(n+1) + 1 + (-1)^n. - G. C. Greubel, May 24 2021

A114688 Expansion of (1 +3*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 5, 11, 30, 71, 175, 421, 1020, 2461, 5945, 14351, 34650, 83651, 201955, 487561, 1177080, 2841721, 6860525, 16562771, 39986070, 96534911, 233055895, 562646701, 1358349300, 3279345301, 7917039905, 19113425111, 46143890130, 111401205371, 268946300875
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,5,11,30]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Maple
    Pell:= proc(n) option remember;
        if n<2 then n
      else 2*Pell(n-1) + Pell(n-2)
        fi; end:
    seq((10*Pell(n+1) -3*(1+(-1)^n))/4, n=0..40); # G. C. Greubel, May 24 2021
  • Mathematica
    CoefficientList[Series[(-1-3x+x^2)/((1-x)(x+1)(x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{2,2,-2,-1},{1,5,11,30},40] (* Harvey P. Dale, Dec 18 2012 *)
  • PARI
    Vec((-1-3*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 26 2016
    
  • Sage
    [(10*lucas_number1(n+1,2,-1) -3*(1+(-1)^n))/4 for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +3*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
a(0)=1, a(1)=5, a(2)=11, a(3)=30, a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4). - Harvey P. Dale, Dec 18 2012
a(n) = (-6 - 6*(-1)^n + 5*sqrt(2)*( (1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n) ))/8. - Colin Barker, May 26 2016
a(n) = (10*A000129(n+1) - 3*(1 + (-1)^n))/4. - G. C. Greubel, May 24 2021

A114689 Expansion of (1 +4*x -x^2)/((1-x^2)*(1-2*x-x^2)); a Pellian-related sequence.

Original entry on oeis.org

1, 6, 13, 36, 85, 210, 505, 1224, 2953, 7134, 17221, 41580, 100381, 242346, 585073, 1412496, 3410065, 8232630, 19875325, 47983284, 115841893, 279667074, 675176041, 1630019160, 3935214361, 9500447886, 22936110133, 55372668156, 133681446445, 322735561050
Offset: 0

Views

Author

Creighton Dement, Feb 18 2006

Keywords

Comments

Elements of odd index give match to A075848: 2*n^2 + 9 is a square. Generating floretion: - 1.5'i + 'j + 'k - .5i' + j' + k' + .5'ii' - .5'jj' - .5'kk' - 'ij' + 'ik' - 'ji' + .5'jk' + 2'ki' - .5'kj' + .5e

Crossrefs

Programs

  • Magma
    I:=[1,6,13,36]; [n le 4 select I[n] else 2*Self(n-1) +2*Self(n-2) -2*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, May 24 2021
    
  • Mathematica
    Table[3*Fibonacci[n+1, 2] -1-(-1)^n, {n, 0, 30}] (* G. C. Greubel, May 24 2021 *)
  • PARI
    Vec((-1-4*x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, May 26 2016
    
  • Sage
    [3*lucas_number1(n+1,2,-1) -(1+(-1)^n) for n in (0..30)] # G. C. Greubel, May 24 2021

Formula

G.f.: (1 +4*x -x^2)/((1-x)*(1+x)*(1-2*x-x^2)).
From Colin Barker, May 26 2016: (Start)
a(n) = (-1 - (-1)^n) + 3*((1+sqrt(2))^(1+n) - (1-sqrt(2))^(1+n))/(2*sqrt(2)).
a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) for n>3.
(End)
a(n) = 3*A000129(n+1) - (1 + (-1)^n). - G. C. Greubel, May 24 2021
Showing 1-3 of 3 results.