cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100836 a(n) is the smallest value k > 1 such that k^2 - 1 is divisible by n^2.

Original entry on oeis.org

2, 3, 8, 7, 24, 17, 48, 31, 80, 49, 120, 17, 168, 97, 26, 127, 288, 161, 360, 49, 197, 241, 528, 127, 624, 337, 728, 97, 840, 199, 960, 511, 485, 577, 99, 161, 1368, 721, 170, 351, 1680, 197, 1848, 241, 649, 1057, 2208, 127, 2400, 1249, 577, 337, 2808, 1457, 1451
Offset: 1

Views

Author

Thomas Kerscher (Thomas.Kerscher(AT)web.de), Jan 19 2005

Keywords

Comments

a(n) = n^2 - 1 if n > 1 is in A235868. - Robert Israel, Jan 17 2019

Examples

			a(4)=7 because 7^2 - 1 is divisible by 4^2 (and 7 is the smallest integer > 1 that satisfies this criterion).
		

Crossrefs

Cf. A235868.

Programs

  • Maple
    f:= n -> min(map(t -> rhs(op(t)),{msolve(k^2-1,n^2)}) minus {1}):
    f(1):= 2:
    map(f, [$1..100]); # Robert Israel, Jan 17 2019
  • Mathematica
    With[{c=Range[2,10000]},Flatten[Table[Select[c,Divisible[#^2-1, n^2]&, 1],{n,60}]]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    { A100836(n)=local(f,b,t,m); if(n==1,return(1)); if(n==2,return(3));t=valuation(n,2); if(n==2^t, return(2^(2*t-1)-1)); f=factorint(n/2^t);f=vector(matsize(f)[1],j,f[j,1]^(2*f[j,2])); if(t>0, f=concat(f,[2^(2*t-1)])); b=n^2+1; forvec(v=vector(#f,i,[0,1]), m=lift(chinese(vector(#f,j,Mod((-1)^v[j],f[j])))); if(m>1, b=min(b,m)); ); b } /* Max Alekseyev, Nov 21 2008 */

Extensions

Entries confirmed by Ray Chandler, R. J. Mathar, and Max Alekseyev, Nov 21 2008