cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100847 Number of partitions of 2n in which each odd part has even multiplicity and each even part has odd multiplicity.

Original entry on oeis.org

1, 2, 3, 7, 10, 17, 28, 42, 62, 93, 137, 193, 276, 383, 532, 734, 997, 1342, 1807, 2400, 3177, 4190, 5478, 7130, 9245, 11923, 15305, 19591, 24957, 31673, 40075, 50518, 63460, 79523, 99296, 123664, 153616, 190271, 235072, 289776, 356302, 437107, 535112, 653626
Offset: 0

Views

Author

Vladeta Jovovic, Aug 16 2007

Keywords

Examples

			a(3) = 7 because we have 6, 42, 411, 33, 222, 21111 and 111111.
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^i-x^(2*i))/(1-x^i),i=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..35); # Emeric Deutsch, Aug 25 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(i+j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
           +b(n, i-1)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 31 2014
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k-x^(2*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: Product_{i>0} (1+x^i-x^(2*i))/(1-x^i).
a(n) ~ sqrt(Pi^2/3 + 4*log(phi)^2) * exp(sqrt((2*Pi^2/3 + 8*log(phi)^2)*n)) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

Extensions

More terms from Emeric Deutsch, Aug 25 2007