A100847 Number of partitions of 2n in which each odd part has even multiplicity and each even part has odd multiplicity.
1, 2, 3, 7, 10, 17, 28, 42, 62, 93, 137, 193, 276, 383, 532, 734, 997, 1342, 1807, 2400, 3177, 4190, 5478, 7130, 9245, 11923, 15305, 19591, 24957, 31673, 40075, 50518, 63460, 79523, 99296, 123664, 153616, 190271, 235072, 289776, 356302, 437107, 535112, 653626
Offset: 0
Examples
a(3) = 7 because we have 6, 42, 411, 33, 222, 21111 and 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:=product((1+x^i-x^(2*i))/(1-x^i),i=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..35); # Emeric Deutsch, Aug 25 2007 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(irem(i+j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i) +b(n, i-1))) end: a:= n-> b(2*n$2): seq(a(n), n=0..60); # Alois P. Heinz, May 31 2014
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1+x^k-x^(2*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)
Formula
G.f.: Product_{i>0} (1+x^i-x^(2*i))/(1-x^i).
a(n) ~ sqrt(Pi^2/3 + 4*log(phi)^2) * exp(sqrt((2*Pi^2/3 + 8*log(phi)^2)*n)) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016
Extensions
More terms from Emeric Deutsch, Aug 25 2007