A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.
1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0
Examples
From _Stefano Spezia_, Apr 28 2024: (Start) Triangle begins: 1; 2, 6; 4, 12, 36; 8, 24, 72, 216; 16, 48, 144, 432, 1296; 32, 96, 288, 864, 2592, 7776; ... (End)
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Smooth Number.
Crossrefs
Programs
-
Magma
A100851:= func< n,k | 2^n*3^k >; [A100851(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 11 2024
-
Mathematica
A100851[n_, k_]= 2^n*3^k; Table[A100851[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 11 2024 *)
-
SageMath
def A100851(n,k): return 2^n*3^k flatten([[A100851(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 11 2024
Formula
T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025