cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100852 Triangle read by rows: T(n,k) = 2^k * 3^n, 0 <= k <= n.

Original entry on oeis.org

1, 3, 6, 9, 18, 36, 27, 54, 108, 216, 81, 162, 324, 648, 1296, 243, 486, 972, 1944, 3888, 7776, 729, 1458, 2916, 5832, 11664, 23328, 46656, 2187, 4374, 8748, 17496, 34992, 69984, 139968, 279936, 6561, 13122, 26244, 52488, 104976, 209952, 419904, 839808
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Comments

T(n,0) = A000244(n); T(n,n) = A000400(n) = A100851(n,n);
T(n,1) = A008776(n) for n>0;
T(n,2) = A003946(n+1) for n>1;
T(n,3) = A005051(n+1) for n>2;
T(n,n-1) = A081341(n+1) for n>0;
row sums give A016137.

Examples

			Triangle begins:
   1;
   3,   6;
   9,  18,  36;
  27,  54, 108, 216;
  81, 162, 324, 648, 1296;
...
		

Crossrefs

Cf. A100851, A003586, A065333(T(n, k))=1.

Programs

  • Mathematica
    Table[2^k*3^n, {n, 0, 140}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    for(n=0, 8, for(k=0, n, print1(2^k*3^n", "))) \\ Satish Bysany, Mar 06 2017

Formula

G.f.: 1/((1 - 3*x)(1 - 6*x*y)). - Ilya Gutkovskiy, Jun 03 2017