cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016137 Expansion of 1/((1-3*x)*(1-6*x)).

Original entry on oeis.org

1, 9, 63, 405, 2511, 15309, 92583, 557685, 3352671, 20135709, 120873303, 725416965, 4353033231, 26119793709, 156723545223, 940355620245, 5642176768191, 33853189749309, 203119525916343, 1218718317759525, 7312313393341551, 43873890820402509, 263243376303474663, 1579460351964026805, 9476762394213697311
Offset: 0

Views

Author

Keywords

Crossrefs

Second column of triangle A075498.

Programs

Formula

a(n) = (3^n)*Stirling2(n+2, 2), n >= 0, with Stirling2(n, m) = A008277(n, m).
a(n) = 2*6^n - 3^n.
E.g.f.: (d^2/dx^2)((((exp(3*x)-1)/3)^2)/2!) = -exp(3*x) + 2*exp(6*x).
With leading zero, this is (6^n - 3^n)/3, the binomial transform of A016127 (with extra leading zero). - Paul Barry, Aug 20 2003
With leading zero, this is the fourth binomial transform of A001045, with a(n) = (2^n-1)(3^n/3 - 0^n/3) = A000225(n)*(A000244(n-1) - 0^n/3). - Paul Barry, Apr 28 2004
a(n) = Sum_{k=0..n} A100852(n,k). - Reinhard Zumkeller, Nov 20 2004
Sum_{k=1..n} 3^(k-1)*3^(n-k)*binomial(n, k). - Zerinvary Lajos, Sep 24 2006
a(n) = 9*a(n-1) - 18*a(n-2), n >= 2. - Vincenzo Librandi, Mar 14 2011

Extensions

More terms added by G. C. Greubel, Nov 14 2024

A100851 Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.

Original entry on oeis.org

1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 20 2004

Keywords

Examples

			From _Stefano Spezia_, Apr 28 2024: (Start)
Triangle begins:
   1;
   2,  6;
   4, 12,  36;
   8, 24,  72, 216;
  16, 48, 144, 432, 1296;
  32, 96, 288, 864, 2592, 7776;
  ...
(End)
		

Crossrefs

Programs

Formula

T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
Sum_{n>=0, k=0..n} 1/T(n,k) = 12/5. - Amiram Eldar, May 12 2025
Showing 1-2 of 2 results.